MACE (Metal-Assisted Chemical Etching) approach has drawn a lot of attentions due to its ability to create highly light-absorptive silicon surface. This method can generate numerous cylindrical shape microstructure on...MACE (Metal-Assisted Chemical Etching) approach has drawn a lot of attentions due to its ability to create highly light-absorptive silicon surface. This method can generate numerous cylindrical shape microstructure on the surface of silicon like a forest, which is called “silicon nanowires arrays”. This structure can dramatically suppress both reflection and transmission at the wavelength range from 400 nm to near-infrared 1800 nm by increasing the propagation path of light. In this paper, ordered silicon nanowires arrays with a large area are prepared by wet chemical etching. It is demonstrated that the SiNWs (Silicon nanowires) arrays with different morphologies can be fabricated from monocrystalline silicon of a given orientation by changing silver-plating time. Excellent anti-reflection performance in broadband wavelengths and incident angle is obtained. The fabrication method and potential application of such SiNWs in the field of photoelectric detection have great value and can provide reference for further research in this field.展开更多
文摘MACE (Metal-Assisted Chemical Etching) approach has drawn a lot of attentions due to its ability to create highly light-absorptive silicon surface. This method can generate numerous cylindrical shape microstructure on the surface of silicon like a forest, which is called “silicon nanowires arrays”. This structure can dramatically suppress both reflection and transmission at the wavelength range from 400 nm to near-infrared 1800 nm by increasing the propagation path of light. In this paper, ordered silicon nanowires arrays with a large area are prepared by wet chemical etching. It is demonstrated that the SiNWs (Silicon nanowires) arrays with different morphologies can be fabricated from monocrystalline silicon of a given orientation by changing silver-plating time. Excellent anti-reflection performance in broadband wavelengths and incident angle is obtained. The fabrication method and potential application of such SiNWs in the field of photoelectric detection have great value and can provide reference for further research in this field.