Many existing intelligent recognition technologies require huge datasets for model learning.However,it is not easy to collect rectal cancer images,so the performance is usually low with limited training samples.In add...Many existing intelligent recognition technologies require huge datasets for model learning.However,it is not easy to collect rectal cancer images,so the performance is usually low with limited training samples.In addition,traditional rectal cancer staging is time-consuming,error-prone,and susceptible to physicians’subjective awareness as well as professional expertise.To settle these deficiencies,we propose a novel deep-learning model to classify the rectal cancer stages of T2 and T3.First,a novel deep learning model(RectalNet)is constructed based on residual learning,which combines the squeeze-excitation with the asymptotic output layer and new cross-convolution layer links in the residual block group.Furthermore,a two-stage data augmentation is designed to increase the number of images and reduce deep learning’s dependence on the volume of data.The experiment results demonstrate that the proposed method is superior to many existing ones,with an overall accuracy of 0.8583.Oppositely,other traditional techniques,such as VGG16,DenseNet121,EL,and DERNet,have an average accuracy of 0.6981,0.7032,0.7500,and 0.7685,respectively.展开更多
Carbon materials are widely used as catalysts in electrocatalytic oxidative(EO)degradation of wastewater due to their large specific surface area and low cost.Carbon materials can also be used as catalyst carriers for...Carbon materials are widely used as catalysts in electrocatalytic oxidative(EO)degradation of wastewater due to their large specific surface area and low cost.Carbon materials can also be used as catalyst carriers for EO reactions due to their ease of functionalization with other heteroatoms and metals/metal oxides.To improve the catalytic activity and current efficiency of carbon materials,modifying the structural and physicochemical properties of conventional carbon materials are common improvement method.This review briefly outlines the recent research progress of carbon materials in EO for organic pollutants degradation.It also discusses the modification strategies and corresponding electrocatalytic properties of various carbon materials(carbon nanomaterials and porous carbon materials),and explores the EO mechanism.Finally,some summaries of the remaining challenges and future developments of carbon materials in the field of electrocatalysis are given.展开更多
Simultaneous epitaxial growth of film and nanowire array on a substrate is of both scientific significance and practical importance for nanoscale optoelectronics. Nevertheless, in situ building conducting connection b...Simultaneous epitaxial growth of film and nanowire array on a substrate is of both scientific significance and practical importance for nanoscale optoelectronics. Nevertheless, in situ building conducting connection between individually isolated nanowires grown on insulating substrates is still challenging. Herein, we demonstrate a novel and facile strategy for the simultaneous epitaxial growth of nonpolar a-plane ZnO film and obliquely aligned nanowire array on Au-coated r-plane sapphire substrate. The morphology, structure, components, and optical properties of the as-synthesized ZnO nanostructures were investigated using field-emission scanning electron microscopy X-ray diffraction, field-emission transmission electron microscopy energy-dispersive spectroscopy, X-ray photo- electron spectroscopy, and photoluminescence spectroscopy. A cooperative growth mechanism is proposed: Au-catalyzed vapor transport initiates the co-occurrence of nonpolar a-plane and polar c-plane ZnO nuclei, and subsequently, the non-upward directed Au catalyst helps the nonpolar a-plane ZnO nuclei develop into a ZnO conductive film at the bottom and zinc self-catalyzed vapor-liquid-solid growth helps the polar c-plane ZnO nuclei develop simultaneously into obliquely aligned nanowire arrays. The proposed strategy realized in situ synthesis of nanowires with conductive connection and it can benefit the application of ZnO nanowires in optoelectronics.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 62172192,U20A20228,and 62171203in part by the 2018 Six Talent Peaks Project of Jiangsu Province under Grant XYDXX-127in part by the Science and Technology Demonstration Project of Social Development of Jiangsu Province under Grant BE2019631.
文摘Many existing intelligent recognition technologies require huge datasets for model learning.However,it is not easy to collect rectal cancer images,so the performance is usually low with limited training samples.In addition,traditional rectal cancer staging is time-consuming,error-prone,and susceptible to physicians’subjective awareness as well as professional expertise.To settle these deficiencies,we propose a novel deep-learning model to classify the rectal cancer stages of T2 and T3.First,a novel deep learning model(RectalNet)is constructed based on residual learning,which combines the squeeze-excitation with the asymptotic output layer and new cross-convolution layer links in the residual block group.Furthermore,a two-stage data augmentation is designed to increase the number of images and reduce deep learning’s dependence on the volume of data.The experiment results demonstrate that the proposed method is superior to many existing ones,with an overall accuracy of 0.8583.Oppositely,other traditional techniques,such as VGG16,DenseNet121,EL,and DERNet,have an average accuracy of 0.6981,0.7032,0.7500,and 0.7685,respectively.
基金the financial support from Shanghai Pujiang Program(20PJ1404800).
文摘Carbon materials are widely used as catalysts in electrocatalytic oxidative(EO)degradation of wastewater due to their large specific surface area and low cost.Carbon materials can also be used as catalyst carriers for EO reactions due to their ease of functionalization with other heteroatoms and metals/metal oxides.To improve the catalytic activity and current efficiency of carbon materials,modifying the structural and physicochemical properties of conventional carbon materials are common improvement method.This review briefly outlines the recent research progress of carbon materials in EO for organic pollutants degradation.It also discusses the modification strategies and corresponding electrocatalytic properties of various carbon materials(carbon nanomaterials and porous carbon materials),and explores the EO mechanism.Finally,some summaries of the remaining challenges and future developments of carbon materials in the field of electrocatalysis are given.
基金This work was funded by Hundred Talents Program of Fujian Province and the National Natural Science Foundation of China (No. 61774158), and the Natural Science Foundation of Fujian Province (No. 2018J01110).
文摘Simultaneous epitaxial growth of film and nanowire array on a substrate is of both scientific significance and practical importance for nanoscale optoelectronics. Nevertheless, in situ building conducting connection between individually isolated nanowires grown on insulating substrates is still challenging. Herein, we demonstrate a novel and facile strategy for the simultaneous epitaxial growth of nonpolar a-plane ZnO film and obliquely aligned nanowire array on Au-coated r-plane sapphire substrate. The morphology, structure, components, and optical properties of the as-synthesized ZnO nanostructures were investigated using field-emission scanning electron microscopy X-ray diffraction, field-emission transmission electron microscopy energy-dispersive spectroscopy, X-ray photo- electron spectroscopy, and photoluminescence spectroscopy. A cooperative growth mechanism is proposed: Au-catalyzed vapor transport initiates the co-occurrence of nonpolar a-plane and polar c-plane ZnO nuclei, and subsequently, the non-upward directed Au catalyst helps the nonpolar a-plane ZnO nuclei develop into a ZnO conductive film at the bottom and zinc self-catalyzed vapor-liquid-solid growth helps the polar c-plane ZnO nuclei develop simultaneously into obliquely aligned nanowire arrays. The proposed strategy realized in situ synthesis of nanowires with conductive connection and it can benefit the application of ZnO nanowires in optoelectronics.