Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)sca...Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)scale.This system is designed to use coal as fuel to produce syngas as a first step,similar to that employed for the integrated gasification combined cycle.Subsequently,the solid-oxide fuel-cell(SOFC)system is used to convert chemical energy to electricity directly through an electrochemical reaction without combustion.This system leads to higher efficiency as compared with that from a traditional coal-fired power plant.The unreacted fuel in the SOFC system is transported to an oxygencombustor to be converted to steam and carbon dioxide(CO_(2)).Through a heat-recovery system,the steam is condensed and removed,and CO_(2) is enriched and captured for sequestration or utilization.Comprehensive economic analyses for a typical IGFC system was performed and the results were compared with those for a supercritical pulverized coal-fired power plant.The SOFC stacks selected for IGFC development were tested and qualified under hydrogen and simulated coal syngas fuel.Experimental results using SOFC stacks and thermodynamic analyses indicated that the control of hydrogen/CO ratio of syngas and steam/CO ratio is important to avoid carbon deposition with the fuel pipe.A 20-kW SOFC unit is under development with design power output of 20 kW and DC efficiency of 50.41%.A 100 kW-level subsystem will consist of 6920-kW power-generation units,and the MWth IGFC system will consist of 59100 kWlevel subsystems.展开更多
Power-to-Gas(P2G)plays an important role in enhancing large-scale renewable energy integration in power systems.As an emerging inter-disciplinary subject,P2G technology requires knowledge in electrochemistry,electrica...Power-to-Gas(P2G)plays an important role in enhancing large-scale renewable energy integration in power systems.As an emerging inter-disciplinary subject,P2G technology requires knowledge in electrochemistry,electrical engineering,thermodynamic engineering,chemical engineering and system engineering.Aiming at P2G modeling and operational problems concerning the research field of power systems and the energy internet,this paper briefly reviews the main technologies and application potentials of the P2G system,and makes systematic summaries of major progresses related to P2G’s integration into the power grid in a bottom-top manner,including the modeling of high/room-temperature electrolysis cells,steady-state/dynamic optimization control of the P2G system,P2G’s integrated model and operational strategies at the grid level.In the final part of this paper,suggestions are put forward on future research directions of P2G systems from the aspects of modeling and operational optimization.展开更多
基金received financial supports from Innovation Seedling Projects of Zigong City (2017CXM02)Key R&D Program of Sichuan Province (2017GZ0391)National Key Research and Development Program (2016YFE0102600)
基金The authors thank the Ministry of Science and Technology of the People’s Republic of China for financial support under contract of 2017YEB061900。
文摘Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)scale.This system is designed to use coal as fuel to produce syngas as a first step,similar to that employed for the integrated gasification combined cycle.Subsequently,the solid-oxide fuel-cell(SOFC)system is used to convert chemical energy to electricity directly through an electrochemical reaction without combustion.This system leads to higher efficiency as compared with that from a traditional coal-fired power plant.The unreacted fuel in the SOFC system is transported to an oxygencombustor to be converted to steam and carbon dioxide(CO_(2)).Through a heat-recovery system,the steam is condensed and removed,and CO_(2) is enriched and captured for sequestration or utilization.Comprehensive economic analyses for a typical IGFC system was performed and the results were compared with those for a supercritical pulverized coal-fired power plant.The SOFC stacks selected for IGFC development were tested and qualified under hydrogen and simulated coal syngas fuel.Experimental results using SOFC stacks and thermodynamic analyses indicated that the control of hydrogen/CO ratio of syngas and steam/CO ratio is important to avoid carbon deposition with the fuel pipe.A 20-kW SOFC unit is under development with design power output of 20 kW and DC efficiency of 50.41%.A 100 kW-level subsystem will consist of 6920-kW power-generation units,and the MWth IGFC system will consist of 59100 kWlevel subsystems.
基金This work was supported by the Key Program for International S&T Cooperation Projects of China(2016YFE0102600)National Natural Science Foundation of China(51577096,51761135015)National Key Research and Development Program of China(2018YFB0905200).
文摘Power-to-Gas(P2G)plays an important role in enhancing large-scale renewable energy integration in power systems.As an emerging inter-disciplinary subject,P2G technology requires knowledge in electrochemistry,electrical engineering,thermodynamic engineering,chemical engineering and system engineering.Aiming at P2G modeling and operational problems concerning the research field of power systems and the energy internet,this paper briefly reviews the main technologies and application potentials of the P2G system,and makes systematic summaries of major progresses related to P2G’s integration into the power grid in a bottom-top manner,including the modeling of high/room-temperature electrolysis cells,steady-state/dynamic optimization control of the P2G system,P2G’s integrated model and operational strategies at the grid level.In the final part of this paper,suggestions are put forward on future research directions of P2G systems from the aspects of modeling and operational optimization.