Biosynthesizing Au nanoparticles(AuNPs)from gold-bearing scraps provides a sustainable method to meet the urgent demand for AuNPs.However,it remains challenging to efficiently biosynthesize AuNPs of which the diameter...Biosynthesizing Au nanoparticles(AuNPs)from gold-bearing scraps provides a sustainable method to meet the urgent demand for AuNPs.However,it remains challenging to efficiently biosynthesize AuNPs of which the diameter is less than 10 nm from a trace amount of Au^(3+)concentration at the level of tens ppm.Here,we constructed an exoelectrogenic cell(eCell)-conductive reduced-graphene-oxide aero-gel(rGA)biohybrid by assembling Shewanella sp.S1(SS1)as living biocatalyst and rGA as conductive ad-sorbent,in which Au^(3+)at trace concentrations would be enriched by the adsorption of rGA and reduced to AuNPs through the extracellular electron transfer(EET)of SS1.To regulate the size of the synthe-sized AuNPs to 10 nm,the strain SS1 was engineered to enhance its EET,resulting in strain RS2(pYYD-P tac-ribADEHC&pHG13-P_(bad)-omcC in SS1).Strain RS2 was further assembled with rGA to construct the RS2-rGA biohybrid,which could synthesize AuNPs with the size of 7.62±2.82 nm from 60 ppm Au^(3+)so-lution.The eCell-rGA biohybrid integrated Au^(3+)adsorption and reduction,which enabled AuNPs biosyn-thesis from a trace amount of Au^(3+).Thus,the required Au^(3+)ions concentration was reduced by one or two orders of magnitude compared with conventional methods of AuNPs biosynthesis.Our work devel-oped an AuNPs size regulation technology via engineering eCell’s EET with synthetic biology methods,providing a feasible approach to synthesize AuNPs with controllable size from trace level of gold ions.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFA0901300)the Na-tional Natural Science Foundation of China(Nos.NSFC 32071411,NSFC 32001034,and NSFC 31701569)+1 种基金the Young Science and Tech-nology Talents Growth Project of Education Department of Guizhou Province(No.KY[2018]445)Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation,China National Light Indus-try(No.2021JJ013).
文摘Biosynthesizing Au nanoparticles(AuNPs)from gold-bearing scraps provides a sustainable method to meet the urgent demand for AuNPs.However,it remains challenging to efficiently biosynthesize AuNPs of which the diameter is less than 10 nm from a trace amount of Au^(3+)concentration at the level of tens ppm.Here,we constructed an exoelectrogenic cell(eCell)-conductive reduced-graphene-oxide aero-gel(rGA)biohybrid by assembling Shewanella sp.S1(SS1)as living biocatalyst and rGA as conductive ad-sorbent,in which Au^(3+)at trace concentrations would be enriched by the adsorption of rGA and reduced to AuNPs through the extracellular electron transfer(EET)of SS1.To regulate the size of the synthe-sized AuNPs to 10 nm,the strain SS1 was engineered to enhance its EET,resulting in strain RS2(pYYD-P tac-ribADEHC&pHG13-P_(bad)-omcC in SS1).Strain RS2 was further assembled with rGA to construct the RS2-rGA biohybrid,which could synthesize AuNPs with the size of 7.62±2.82 nm from 60 ppm Au^(3+)so-lution.The eCell-rGA biohybrid integrated Au^(3+)adsorption and reduction,which enabled AuNPs biosyn-thesis from a trace amount of Au^(3+).Thus,the required Au^(3+)ions concentration was reduced by one or two orders of magnitude compared with conventional methods of AuNPs biosynthesis.Our work devel-oped an AuNPs size regulation technology via engineering eCell’s EET with synthetic biology methods,providing a feasible approach to synthesize AuNPs with controllable size from trace level of gold ions.