Mdm2 and Mdm4 are two key negative regulators of the tumor suppressor p53.Deletion of either Mdm2 or Mdm4 induces p53-dependent early embryonic lethality in knockout mouse models.The tissuespecific deletion of Mdm2 in...Mdm2 and Mdm4 are two key negative regulators of the tumor suppressor p53.Deletion of either Mdm2 or Mdm4 induces p53-dependent early embryonic lethality in knockout mouse models.The tissuespecific deletion of Mdm2 induces p53-dependent apoptosis,whereas the deletion of Mdm4 induces both p53-dependent apoptosis and cell cycle arrest.Compared to Mdm4 deletion,Mdm2 deletion causes more severe phenotypic defects.Disrupting the Mdm2 and Mdm4 interaction using knockin mice models causes embryonic lethality that can be completely rescued by the concomitant loss of p53,suggesting that Mdm2 and Mdm4 heterodimerization is critical to inhibit p53 activity during embryogenesis.Overexpression of Mdm2 and Mdm4 in mice induces spontaneous tumorigenesis,which clearly indicates that Mdm2 and Mdm4 are bona fide oncogenes.Studies from these mouse models strongly suggest that blocking Mdm2and Mdm4-mediated p53 inhibition is an appealing therapeutic strategy for cancer patients with wild-type p53 alleles.展开更多
The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to ac...The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, main- tenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehen- sively studied, yet a great deal of new evidence indi- cates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the tar- geted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.展开更多
文摘Mdm2 and Mdm4 are two key negative regulators of the tumor suppressor p53.Deletion of either Mdm2 or Mdm4 induces p53-dependent early embryonic lethality in knockout mouse models.The tissuespecific deletion of Mdm2 induces p53-dependent apoptosis,whereas the deletion of Mdm4 induces both p53-dependent apoptosis and cell cycle arrest.Compared to Mdm4 deletion,Mdm2 deletion causes more severe phenotypic defects.Disrupting the Mdm2 and Mdm4 interaction using knockin mice models causes embryonic lethality that can be completely rescued by the concomitant loss of p53,suggesting that Mdm2 and Mdm4 heterodimerization is critical to inhibit p53 activity during embryogenesis.Overexpression of Mdm2 and Mdm4 in mice induces spontaneous tumorigenesis,which clearly indicates that Mdm2 and Mdm4 are bona fide oncogenes.Studies from these mouse models strongly suggest that blocking Mdm2and Mdm4-mediated p53 inhibition is an appealing therapeutic strategy for cancer patients with wild-type p53 alleles.
文摘The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, main- tenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehen- sively studied, yet a great deal of new evidence indi- cates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the tar- geted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.