期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Surface group directed low-temperature synthesis and self-assembly of Al nanostructures for lithium storage 被引量:2
1
作者 Xianglong Kong Zhi Li +8 位作者 Xudong Zhao shunpeng chen Zhuoyan Wu Fei He Piaoping Yang Xinghua Chang Xingguo Li Zhiliang Liu Jie Zheng 《Nano Research》 SCIE EI CSCD 2023年第1期1733-1739,共7页
Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and ... Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors.Herein,a surface group directed method is developed to efficiently achieve low-temperature synthesis and selfassembly of zero-dimensional(0D)Al nanocrystals over one-dimensional(1D)carbon fibers(Al@CFs)through non-flammable AlCl3 reduction at 70°C.Theoretical calculations unveil surface‒OLi groups of carbon fibers exert efficient binding effect to AlCl3,which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals.The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer,ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change,thus exhibiting high structure stability and superior lithium storage performance.This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications. 展开更多
关键词 Al nanostructure low-temperature synthesis SELF-ASSEMBLY surface group lithium storage
原文传递
Ultrafine Sn_(4)P_(3)nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries 被引量:7
2
作者 Zhiliang Liu Xiangxi Wang +8 位作者 Zhuoyan Wu Sungjin Yang Shaolei Yang shunpeng chen Xinteng Wu Xinghua Chang Piaoping Yang Jie Zheng Xingguo Li 《Nano Research》 SCIE EI CAS CSCD 2020年第11期3157-3164,共8页
Nanostructured metal phosphides are very attractive materials in energy storage and conversion,but their applications are severely limited by complicated preparation steps,harsh conditions and large excess of highly t... Nanostructured metal phosphides are very attractive materials in energy storage and conversion,but their applications are severely limited by complicated preparation steps,harsh conditions and large excess of highly toxic phosphorus source.Here we develop a highly efficient one-step method to synthesize Sn_(4)P_(3)nanostructure based on simultaneous reduction of SnCl_(4)and PCl_(3)on mechanically activated Na surface and in situ phosphorization.The low-toxic PCl3 displays a very high phosphorizing efficiency(100%).Furthermore,this simple method is powerful to control phosphide size.Ultrafine Sn_(4)P_(3)nanocrystals(<5 nm)supported on carbon sheets(Sn_(4)P_(3)/C)are obtained,which is due to the unique bottom-up surface-limited reaction.As the anode material for sodium/lithium ion batteries(SIBs/LIBs),the Sn_(4)P_(3)/C shows profound sodiation/lithiation extents,good phase-conversion reversibility,excellent rate performance and long cycling stability,retaining high capacities of 420 mAh/g for SIBs and 760 mAh/g for LIBs even after 400 cycles at 1.0 A/g.Combining simple and efficient preparation,low-toxic and high-efficiency phosphorus source and good control of nanosize,this method is very promising for low-cost and scalable preparation of high-performance Sn_(4)P_(3)anode. 展开更多
关键词 metal phosphide chloride reduction ultrafine Sn_(4)P_(3)nanocrystals lithium-ion battery(LIB) sodium-ion battery(SIB) anode material
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部