期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Selenium vacancy-rich and heteroatom-doped CoSe/Mo_(2)CTx MXene prepared using ionic liquid dopants for pH-universal hydrogen evolution and flexible supercapacitors 被引量:3
1
作者 Mingjie Yi shunyou hu +2 位作者 Na Li Hao Wang Jiaheng Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期453-464,I0013,共13页
Vacancy engineering is a useful methodology in the development of catalysts and electrode materials.Herein,we report the introduction of Se-vacancy pairs in heteroatom-doped(N,B,and F)CoSe/Mo_(2)CT_(x) MXene(NBF-CoSe/... Vacancy engineering is a useful methodology in the development of catalysts and electrode materials.Herein,we report the introduction of Se-vacancy pairs in heteroatom-doped(N,B,and F)CoSe/Mo_(2)CT_(x) MXene(NBF-CoSe/Mo_(2)CT_(x))to enhance the hydrogen evolution reaction(HER)and supercapacitor activities via an ionic liquid-mediated method.Se vacancy pairs and heteroatom doping enable the reallocation of local electron states and add active sites,improving the electrochemical activity of NBF-CoSe/Mo_(2)CT_(x) with high HER activities over a broad range of pH.At a current density of 10 mA cm^(-2),overvoltages of 70 and 81 mV are respectively produced in 0.5 M H_(2)SO_(4)and 1 M KOH.The optimal structure also exhibits outstanding electrochemical performance in an asymmetric supercapacitor with an energy density of 34.2 Wh kg^(-1)at a power density of 15989.6Wkg^(-1).This study opens new avenues for the introduction of Se vacancies and heteroatom doping to improve the application performance. 展开更多
关键词 Flexible supercapacitors Heteroatom-doped CoSe Hydrogen evolution reaction Ionic liquids Selenium vacancy
下载PDF
Biologically inspired anthraquinone redox centers and biomass graphene for renewable colloidal gels toward ultrahigh-performance flexible micro-supercapacitors
2
作者 Tiansheng Wang shunyou hu +9 位作者 Yuanyuan hu Dong Wu Hao Wu Jinxu huang Hao Wang Weiwei Zhao Wen Yu Mi Wang Jie Xu Jiaheng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第20期178-189,共12页
Biomass carbon and small redox biomolecules are attractive materials for green,sustainable energy storage devices owing to their environmentally friendly,low-cost,scalable,and novel sources.However,most devices manufa... Biomass carbon and small redox biomolecules are attractive materials for green,sustainable energy storage devices owing to their environmentally friendly,low-cost,scalable,and novel sources.However,most devices manufactured using these materials have low specific capacitance,poor cycle stability,short lifetime,complexity,and low precision of device fabrication.Herein,we report the directed self-assembly of mononuclear anthraquinone(MAQ)derivatives and porous lignin-based graphene oxide(PLGO)into a renewable colloidal gel through noncovalent interactions.These self-assembled gel electrode materials exhibited high capacitance(484.8 F g^(−1) at a current density of 1 A g^(−1))and could be further printed as flexible micro-supercapacitors(FMSCs)with arbitrary patterns and a relatively high resolution on specific substrates.The FMSCs exhibited excellent areal capacitance(43.6 mF cm^(−2)),energy and power densities(6.1μWh cm^(−2) and 50μW cm^(−2),respectively),and cycle stability(>10,000 cycles).Furthermore,the printed FMSCs and integrated FMSC arrays exhibited remarkable flexibility while maintaining a stable capacitance.The proposed approach can be applied to other quinone biomolecules and biomass-based carbon materials.This study provides a basis for fabricating green and sustainable energy storage device architectures with high capacitance,long-term cycling,high scalability,and high precision. 展开更多
关键词 Biomass carbon Mononuclear anthraquinone Noncovalent interactions Renewable colloidal gel Flexible micro-supercapacitors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部