A new method of detecting stress change by temperature(DSCT),has been recently proposed on the basis of the experimental results in laboratory,and verified by field observation.In this paper,at first,physical backgrou...A new method of detecting stress change by temperature(DSCT),has been recently proposed on the basis of the experimental results in laboratory,and verified by field observation.In this paper,at first,physical background is concisely introduced,and experimental researches are followed.Then,the key techniques are reviewed,and the main results on in-situ observations are also given in detail.At last,we emphasize on the prospects of this method for being investigated further.The potential prospect includes six contents:(1)to observe the tidal force and its secondary fluid thermal effect;(2)to study temperature response to change in direction of the stress change;(3)to carry out practical engineering application;(4)to analyze the strong earthquake risk,based on bedrock temperature observation;(5)to conduct in situ experiment on DSCT;(6)to explain quantitatively the satellite thermal infrared anomaly.In short,considering that the dynamic change of the crustal stress is a key parameter of earthquake forecasting or engineering application,the method of DSCT has important practical significance for earthquake risk or engineering applications.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.42274079)by the Basic Research Funds from the Institute of Geology,China Earthquake Administration (Grant No.IGCEA1815).
文摘A new method of detecting stress change by temperature(DSCT),has been recently proposed on the basis of the experimental results in laboratory,and verified by field observation.In this paper,at first,physical background is concisely introduced,and experimental researches are followed.Then,the key techniques are reviewed,and the main results on in-situ observations are also given in detail.At last,we emphasize on the prospects of this method for being investigated further.The potential prospect includes six contents:(1)to observe the tidal force and its secondary fluid thermal effect;(2)to study temperature response to change in direction of the stress change;(3)to carry out practical engineering application;(4)to analyze the strong earthquake risk,based on bedrock temperature observation;(5)to conduct in situ experiment on DSCT;(6)to explain quantitatively the satellite thermal infrared anomaly.In short,considering that the dynamic change of the crustal stress is a key parameter of earthquake forecasting or engineering application,the method of DSCT has important practical significance for earthquake risk or engineering applications.