期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy 被引量:1
1
作者 Zhenbao Li Jiaojiao Zhu +13 位作者 Yongqi Wang Mei Zhou Dan Li shunzhe zheng LiLi Yin Cong Luo Huicong Zhang Lu Zhong Wei Li JianWang Shuangying Gui Biao Cai Yongjun Wang Jin Sun 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2020年第4期482-491,共10页
The therapeutic efficiency of active targeting nanoparticulate drug delivery systems(nano-DDS)is highly compromised by the plasma proteins adsorption on nanoparticles(NPs)surface,which significantly hinders cell membr... The therapeutic efficiency of active targeting nanoparticulate drug delivery systems(nano-DDS)is highly compromised by the plasma proteins adsorption on nanoparticles(NPs)surface,which significantly hinders cell membrane receptors to recognize the designed ligands,and provokes the off-target toxicity and rapid clearance of NPs in vivo.Herein,we report a novel dihydroartemisinin(DHA)-decorating nano-DDS that in situ specifically recruits endogenous apolipoprotein E(apoE)on the NPs surface.The apoE-anchored corona is able to prolong PLGA-PEG2000-DHA(PPD)NPs circulation capability in blood,facilitate NPs accumulating in tumor cells by the passive enhanced permeability and retention(EPR)effect and low-density lipoprotein receptor(LDLr)-mediated target transport,and ultimately improve the in vivo antitumor activity.Our findings demonstrate that the strategy of in situ regulated apoE-enriched corona ensures NPs an efficient LDLr-mediated tumor-homing chemotherapy. 展开更多
关键词 In situ ApoE-enriched corona DHA decoration Nanoparticulate drug delivery system LDLr-mediated tumor-homing CHEMOTHERAPY
下载PDF
Fine-tuning the structure-tolerance-antitumor efficacy axis of prodrug nanoassemblies via branched aliphatic functionalization
2
作者 Guanting Li Fengli Xia +10 位作者 Hongying Xiao shunzhe zheng Shuwen Fu Han Qiao Qianhui Jin Xuanbo Zhang Dun Zhou Chutong Tian Jin Sun Zhonggui He Bingjun Sun 《Nano Research》 SCIE EI CSCD 2024年第4期2908-2918,共11页
Small-molecule prodrug nanoassemblies have emerged as efficient antitumor drug delivery systems.However,in the case of camptothecins-based prodrug nanoassemblies,linear aliphatic side chain modification often results ... Small-molecule prodrug nanoassemblies have emerged as efficient antitumor drug delivery systems.However,in the case of camptothecins-based prodrug nanoassemblies,linear aliphatic side chain modification often results in rod-shaped or irregularly shaped nanoassemblies,which are highly unfavorable for sterilization through filtration,and may cause capillary blockage upon intravenous injection.The rational design of camptothecins-based prodrug nanoassemblies remains a challenge.Herein,we propose that branched aliphatic alcohol(BAA)functionalization could fine-tune the structure-tolerance-antitumor efficacy axis of prodrug nanoassemblies.Correspondingly,four SN38-BAA prodrugs were synthesized by conjugating 7-ethyl-10-hydroxycamptothecin(SN38)with BAAs of varying lengths via a tumor redox-responsive disulfide bond,which self-assemble into uniform spherical nanoparticles.The length of BAA was found to significant impact the multiple drug delivery process,including colloidal stability,drug release profiles and pharmacokinetics.Overall,SN38-C21 NPs(SN38-11-heneicosanol nanoparticles),featuring the longest BAA,showcased multiple therapeutic advantages,ultimately culminating the optimal antitumor efficacy and tolerance.The findings underscore the potential of BAA functionalization in strengthening the therapeutic outcomes of prodrug nanoassemblies,and provide valuable insights for developing translational camptothecins-based nanomedicines. 展开更多
关键词 prodrug nanoassembly self-assembly antitumor efficacy TOLERANCE 7-ethyl-10-hydroxycamptothecin(SN_(3)8)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部