High yield,high quality,stable yield,adaptability to growth period,and modern mechanization are the basic requirements for crops in the 21st century.Soybean oleic acid is a natural unsaturated fatty acid with strong a...High yield,high quality,stable yield,adaptability to growth period,and modern mechanization are the basic requirements for crops in the 21st century.Soybean oleic acid is a natural unsaturated fatty acid with strong antioxidant properties and stability.Known as a safe fatty acid,it has the ability to successfully prevent cardiovascular and cerebrovascular disorders.Improving the fatty acid composition of soybean seeds,can not only speed up the breeding process of high-quality high-oil and high-oleic soybeans,but also have important significance in human health,and provide the possibility for the development of soybean oil as a new energy source.Hence,the aim of this study was to analyze the high oleic acid elated gene GmSAM22 in soybean.In this research the soybean oleic acid-related gene GmSAM22 was screened out by Genome-wide association analysis,a 662 bp fragment was acquired by specific PCR amplification,and the pMD18T cloning vector was linked by the use of a seamless cloning technique.Bioinformatics analysis of the signal peptide prediction,subcellular localization,protein hydrophobicity,transmembrane region analysis,a phosphorylation site,protein secondary and tertiary structure and protein interaction analysis of the protein encoded by the SAM22 gene was carried out.The plasmid of the gene editing vector is pBK041.The overexpression vector was transformed from pCAMBIA3301 as the base vector,and overexpression vector were designed.Positive plants were obtained by genetic transformation by the pollen tube channel method.Fluorescence quantitative PCR was performed on the T2 generation plants to detect the relative expression levels in different tissues.Southern Blot was used to detect the presence of hybridization signal.Screening genes BAR,35S,and NOS in plants were identified by conventional PCR.10 seeds with high and low oleic acid content were chosen for quantitative PCR identification,and finally,the concentration and morphology of soybean fatty acids were identified by nearfar infrared spectroscopy.On 10 seeds with an upper and lower oleic acid content,a quantitative fluorescence analysis was done.In Southern blot hybridization,the SAM22 gene was integrated into the recipient soybean plant in hands of a sole copy.Fluorescence quantitative PCR appeared that the average relative expression of the SAM22 gene in roots,stems,leaves,and seeds was 1.70,1.67,3.83,and 4.41,respectively.Positive expression seeds had a 4.77%increase in oleic acid content.The level of oleic acid in the altered seeds was reduced by 4.13%when compared to CK,and it was discovered that the GmSAM22 gene could be a regulatory and secondary gene that promotes the conversion of stearic acid to oleic acid in soybean.There has not been a discussion of gene cloning or functional verification.The cloning and genetic transformation of the soybean SAM22 gene can effectively increase the content of oleic acid,which lays a foundation for the study of soybean with high oleic acid.展开更多
In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was const...In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was constructed by means of genetic engineering,and the PR1 gene was genetically transformed to contain the PR1 gene through the pollen tube method.In CryAb-8Like transgenic high-generation T7 receptor soybean,a new material that is resistant to insects and diseases is obtained.For T2 transformed plants,routine PCR detection,Southern Blot hybridization,fluorescence quantitative PCR detection,indoor and outdoor pest resistance identification and indoor disease resistance identification were performed.The results showed that there were 9 positive plants in the routine PCR test of T2 generation.In Southern Blot hybridization,both PR1 and CryAb-8Like genes are integrated in soybeans in the form of single copies.Fluorescence quantitative PCR showed that the expression levels of PR1 and CryAb-8Like genes are different in different tissues.The average expression levels of PR1 gene in plant roots,stems,and leaves are 2.88,1.54,and 5.26,respectively.CryAb-8Like genes are found in roots,stems,and leaves.The average expression levels were 1.36,1.39,and 4.25,respectively.The insectivorous rate of the CryAb-8Like gene in outdoor plants with positive insect resistance identification was 3.78%.The disc partition method was used indoors for pest resistance identification,and the bud length of transformed plants increased significantly.The average mortality rate of untransformed plants in indoor disease resistance identification was as high as 56.66%,and the average mortality rate of plants transformed with PR1 gene was 10.00%,and disease resistance was significantly improved.Therefore,a new material with resistance to diseases and insects is obtained.展开更多
The fatty acid dehydrogenase gene plays an important role in regulating the oleic acid content in soybean.Genome-wide association study screened out soybean oleic acid related gene Gm15G117700.A fragment size of 693bp...The fatty acid dehydrogenase gene plays an important role in regulating the oleic acid content in soybean.Genome-wide association study screened out soybean oleic acid related gene Gm15G117700.A fragment size of 693bp was obtained by PCR amplification of the gene and,it was connected by seamless cloning technology to the pMD18T cloning vector.Based on the gene sequence cloned,bioinformatic analysis of gene protein was performed.The overexpression vector of Gm15G117700 and the CRISPR/Cas9 gene editing vector were constructed.The positive plants were obtained by Agrobacterium-mediated transformation of soybean cotyledon nodes and T2 plants were identified by conventional PCR,QT-PCR and Southern blot hybridization.10 copies of high and low oleic acid seeds were selected for QT-PCR to identify the expression content of Gm15G117700 gene in different soybeans,and finally near-infrared spectroscopy analyzer was used to identify the oleic acid quality of soybeans.T2 RT-PCR identification showed that overexpression was reduced by 3.94%,and gene editing was increased by 3.49%.It is determined that the Gm15G117700 gene may belong to a regulatory gene,a minor gene that can promote the conversion to linoleic acid content in soybean oleic acid synthesis.The gene cloning and its functional verification was not reported yet.This is the first report by PCR amplification of soybean Gm15G117700 genes and gene expression vector.Improving the content of oleic acid in soybean lay a foundation for researchers.Therefore;this study clearly identified the function of soybean Gm15G117700 gene and its role played in oleic acid synthesis and metabolism.展开更多
Amorphous/nanocrystalline dual-phase structures have recently emerged as an effective way for over-coming the strength-ductility trade-offand breaking the limitation of the reverse Hall-Petch effect.Here,we proposed a...Amorphous/nanocrystalline dual-phase structures have recently emerged as an effective way for over-coming the strength-ductility trade-offand breaking the limitation of the reverse Hall-Petch effect.Here,we proposed a new strategy to develop a hierarchical and interconnected amorphous-crystalline nanocomposite arising from the nanoscale elemental interdiffusion and oxygen adsorption behavior dur-ing thermal treatment processes.The nanocomposite consisted of a three-dimensional(3D)hierarchical network structure where the crystalline phase(Cr-Co-Ni-Al)was embedded into the Al-O-based amor-phous phase network with critical feature sizes encompassing three orders of magnitude(from microm-eter to nanometer scale).It can achieve ultrahigh compression yield strength of-3.6 GPa with large homogeneous deformation of over 50%strain.The massive interstitial atoms induced lattice distortion and hierarchical amorphous phase boundary contributed to the strength improvement.in situ Uniaxial compression inside a transmission electron microscope(TEM)revealed that the exceptional deformability of the nanocomposites resulted from the homogenous plastic flow of nano-sized amorphous phase and the plastic co-deformation behavior restricted by the nano-architected dual-phase interface.The proposed dual-phase synthesis approach can outperform conventional nanolaminates design strategies in terms of the mechanical properties achievable while providing a pathway to easily tune the microstructure of these nanolaminates.展开更多
基金funded by the National Major Special Project for Breeding New Varieties of Genetically Modified Organisms(2016ZX08004-004)National Natural Science Foundation of China(31771817).
文摘High yield,high quality,stable yield,adaptability to growth period,and modern mechanization are the basic requirements for crops in the 21st century.Soybean oleic acid is a natural unsaturated fatty acid with strong antioxidant properties and stability.Known as a safe fatty acid,it has the ability to successfully prevent cardiovascular and cerebrovascular disorders.Improving the fatty acid composition of soybean seeds,can not only speed up the breeding process of high-quality high-oil and high-oleic soybeans,but also have important significance in human health,and provide the possibility for the development of soybean oil as a new energy source.Hence,the aim of this study was to analyze the high oleic acid elated gene GmSAM22 in soybean.In this research the soybean oleic acid-related gene GmSAM22 was screened out by Genome-wide association analysis,a 662 bp fragment was acquired by specific PCR amplification,and the pMD18T cloning vector was linked by the use of a seamless cloning technique.Bioinformatics analysis of the signal peptide prediction,subcellular localization,protein hydrophobicity,transmembrane region analysis,a phosphorylation site,protein secondary and tertiary structure and protein interaction analysis of the protein encoded by the SAM22 gene was carried out.The plasmid of the gene editing vector is pBK041.The overexpression vector was transformed from pCAMBIA3301 as the base vector,and overexpression vector were designed.Positive plants were obtained by genetic transformation by the pollen tube channel method.Fluorescence quantitative PCR was performed on the T2 generation plants to detect the relative expression levels in different tissues.Southern Blot was used to detect the presence of hybridization signal.Screening genes BAR,35S,and NOS in plants were identified by conventional PCR.10 seeds with high and low oleic acid content were chosen for quantitative PCR identification,and finally,the concentration and morphology of soybean fatty acids were identified by nearfar infrared spectroscopy.On 10 seeds with an upper and lower oleic acid content,a quantitative fluorescence analysis was done.In Southern blot hybridization,the SAM22 gene was integrated into the recipient soybean plant in hands of a sole copy.Fluorescence quantitative PCR appeared that the average relative expression of the SAM22 gene in roots,stems,leaves,and seeds was 1.70,1.67,3.83,and 4.41,respectively.Positive expression seeds had a 4.77%increase in oleic acid content.The level of oleic acid in the altered seeds was reduced by 4.13%when compared to CK,and it was discovered that the GmSAM22 gene could be a regulatory and secondary gene that promotes the conversion of stearic acid to oleic acid in soybean.There has not been a discussion of gene cloning or functional verification.The cloning and genetic transformation of the soybean SAM22 gene can effectively increase the content of oleic acid,which lays a foundation for the study of soybean with high oleic acid.
基金the National Major Special Project for Breeding New Varieties of Genetically Modified Organisms(2016ZX08004-004).
文摘In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was constructed by means of genetic engineering,and the PR1 gene was genetically transformed to contain the PR1 gene through the pollen tube method.In CryAb-8Like transgenic high-generation T7 receptor soybean,a new material that is resistant to insects and diseases is obtained.For T2 transformed plants,routine PCR detection,Southern Blot hybridization,fluorescence quantitative PCR detection,indoor and outdoor pest resistance identification and indoor disease resistance identification were performed.The results showed that there were 9 positive plants in the routine PCR test of T2 generation.In Southern Blot hybridization,both PR1 and CryAb-8Like genes are integrated in soybeans in the form of single copies.Fluorescence quantitative PCR showed that the expression levels of PR1 and CryAb-8Like genes are different in different tissues.The average expression levels of PR1 gene in plant roots,stems,and leaves are 2.88,1.54,and 5.26,respectively.CryAb-8Like genes are found in roots,stems,and leaves.The average expression levels were 1.36,1.39,and 4.25,respectively.The insectivorous rate of the CryAb-8Like gene in outdoor plants with positive insect resistance identification was 3.78%.The disc partition method was used indoors for pest resistance identification,and the bud length of transformed plants increased significantly.The average mortality rate of untransformed plants in indoor disease resistance identification was as high as 56.66%,and the average mortality rate of plants transformed with PR1 gene was 10.00%,and disease resistance was significantly improved.Therefore,a new material with resistance to diseases and insects is obtained.
基金supported by Chinese National Natural Science Foundation(31571689)Major National Science and Technology Project for New Varieties of Genetically Modified Organisms(2016ZX08004-004-003).
文摘The fatty acid dehydrogenase gene plays an important role in regulating the oleic acid content in soybean.Genome-wide association study screened out soybean oleic acid related gene Gm15G117700.A fragment size of 693bp was obtained by PCR amplification of the gene and,it was connected by seamless cloning technology to the pMD18T cloning vector.Based on the gene sequence cloned,bioinformatic analysis of gene protein was performed.The overexpression vector of Gm15G117700 and the CRISPR/Cas9 gene editing vector were constructed.The positive plants were obtained by Agrobacterium-mediated transformation of soybean cotyledon nodes and T2 plants were identified by conventional PCR,QT-PCR and Southern blot hybridization.10 copies of high and low oleic acid seeds were selected for QT-PCR to identify the expression content of Gm15G117700 gene in different soybeans,and finally near-infrared spectroscopy analyzer was used to identify the oleic acid quality of soybeans.T2 RT-PCR identification showed that overexpression was reduced by 3.94%,and gene editing was increased by 3.49%.It is determined that the Gm15G117700 gene may belong to a regulatory gene,a minor gene that can promote the conversion to linoleic acid content in soybean oleic acid synthesis.The gene cloning and its functional verification was not reported yet.This is the first report by PCR amplification of soybean Gm15G117700 genes and gene expression vector.Improving the content of oleic acid in soybean lay a foundation for researchers.Therefore;this study clearly identified the function of soybean Gm15G117700 gene and its role played in oleic acid synthesis and metabolism.
基金supported by Shenzhen-Hong Kong-Macao Science and Technology Program(Category C)(No.SGDX2020110309300301)Key R&D Program from the Science and Technology Department of Sichuan Province(Key Science&Technology Project)(No.2022YFSY0001)+1 种基金Changsha Municipal Science and Technology Bureau(No.kh2201035)the Innovation and Technology Commission of Hong Kong(No.GHP/221/21GD).
文摘Amorphous/nanocrystalline dual-phase structures have recently emerged as an effective way for over-coming the strength-ductility trade-offand breaking the limitation of the reverse Hall-Petch effect.Here,we proposed a new strategy to develop a hierarchical and interconnected amorphous-crystalline nanocomposite arising from the nanoscale elemental interdiffusion and oxygen adsorption behavior dur-ing thermal treatment processes.The nanocomposite consisted of a three-dimensional(3D)hierarchical network structure where the crystalline phase(Cr-Co-Ni-Al)was embedded into the Al-O-based amor-phous phase network with critical feature sizes encompassing three orders of magnitude(from microm-eter to nanometer scale).It can achieve ultrahigh compression yield strength of-3.6 GPa with large homogeneous deformation of over 50%strain.The massive interstitial atoms induced lattice distortion and hierarchical amorphous phase boundary contributed to the strength improvement.in situ Uniaxial compression inside a transmission electron microscope(TEM)revealed that the exceptional deformability of the nanocomposites resulted from the homogenous plastic flow of nano-sized amorphous phase and the plastic co-deformation behavior restricted by the nano-architected dual-phase interface.The proposed dual-phase synthesis approach can outperform conventional nanolaminates design strategies in terms of the mechanical properties achievable while providing a pathway to easily tune the microstructure of these nanolaminates.