This paper studies the sliding mode controller design problems for a class of nonlinear system. The nonlinear function is considered to satisfy conic-type constraint condition. A novel finite-time boundedness(FTB) bas...This paper studies the sliding mode controller design problems for a class of nonlinear system. The nonlinear function is considered to satisfy conic-type constraint condition. A novel finite-time boundedness(FTB) based sliding mode controller design theory is proposed. And then a sufficient condition is obtained in terms of linear matrix inequalities(LMIs), which guarantees the resulted sliding mode dynamics to be FTB wrt some predefined scalars. Thereafter, a FTB-based sliding mode control(SMC) law is synthesized to ensure the state of the controlled system is driven into a novel desired switching surface s(t) = c(c is a constant) in a finite time. Simulation results illustrate the validity of the proposed FTB-based SMC design theory.展开更多
An optimized fault detection observer is designed for a class of Markov jump systems with unknown disturbances.By reconstructing the system,the residual error dynamic characteristics of unknown input and fault signals...An optimized fault detection observer is designed for a class of Markov jump systems with unknown disturbances.By reconstructing the system,the residual error dynamic characteristics of unknown input and fault signals,including unknown disturbances and modeling error are obtained.The energy norm indexes of disturbance and fault signals of the residual error are selected separately to reflect the restraint of disturbance and the sensitivity of faults,and the design of the fault detection observer is described as an optimization problem.By using the constructed Lyapunov function and linear matrix inequalities,a sufficient condition that the solution to the fault detection observer exists is given and proved,and an optimized design approach is presented.The designed observer makes the systems have stochastic stability and better capability of restraining disturbances,and the given norm index is satisfied.Simulation results demonstrate that the proposed observer can detect the faults sensitively,and the influence of unknown disturbance on residual error can be restrained to a given range.展开更多
基金supported in part by the National Natural Science Foundation of China(61673001,61203051)the Foundation for Distinguished Young Scholars of Anhui Province(1608085J05)the Key Support Program of University Outstanding Youth Talent of Anhui Province(gxydZD201701)
文摘This paper studies the sliding mode controller design problems for a class of nonlinear system. The nonlinear function is considered to satisfy conic-type constraint condition. A novel finite-time boundedness(FTB) based sliding mode controller design theory is proposed. And then a sufficient condition is obtained in terms of linear matrix inequalities(LMIs), which guarantees the resulted sliding mode dynamics to be FTB wrt some predefined scalars. Thereafter, a FTB-based sliding mode control(SMC) law is synthesized to ensure the state of the controlled system is driven into a novel desired switching surface s(t) = c(c is a constant) in a finite time. Simulation results illustrate the validity of the proposed FTB-based SMC design theory.
基金supported by the National Natural Science Foundation of China (Grant No.60574001)the Program for New Century Excellent Talents in University (No.050485).
文摘An optimized fault detection observer is designed for a class of Markov jump systems with unknown disturbances.By reconstructing the system,the residual error dynamic characteristics of unknown input and fault signals,including unknown disturbances and modeling error are obtained.The energy norm indexes of disturbance and fault signals of the residual error are selected separately to reflect the restraint of disturbance and the sensitivity of faults,and the design of the fault detection observer is described as an optimization problem.By using the constructed Lyapunov function and linear matrix inequalities,a sufficient condition that the solution to the fault detection observer exists is given and proved,and an optimized design approach is presented.The designed observer makes the systems have stochastic stability and better capability of restraining disturbances,and the given norm index is satisfied.Simulation results demonstrate that the proposed observer can detect the faults sensitively,and the influence of unknown disturbance on residual error can be restrained to a given range.