Cubic rock salt can lower down or break the rare earth transition barrier through interstitial or vacancy defects owing to its great deformation and rotationflexibility.Here,we demonstrate that oxygen vacancies in SrO ...Cubic rock salt can lower down or break the rare earth transition barrier through interstitial or vacancy defects owing to its great deformation and rotationflexibility.Here,we demonstrate that oxygen vacancies in SrO are induced by proper oxidization and atmosphere adjustment,resulting in defects with various depths and crystalfield distortion.The thermally assisted tunneling from defects to 5 D_(4) state and electronic population decrease on 5 D_(3) state of Tb^(3+)þare observed by the deformation of adjacent oxygen octahedral structure.Finally,the asprepared SrO:0.01 Tb^(3+)þphosphors,commercial BaMgAl10O17:Eu^(2+)þblue phosphor,and CaAlSiN3:Eu^(2+)þred phosphor are mixed and coated onto 280 nm deep-ultraviolet LED chip to assemble white light-emitting LED device.The LEDs show CCT of 3850 K,4136 K,and 4741 K,with color rendering index of 90.3,90.8,and 92.1,respectively.These insights will advance the fundamental knowledge of crystal engineering in cubic rock salt,and enable new ways to manipulate energy transfer and electronic transition via defects.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LQ21E020006)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.2021YW46)the National Natural Science Foundation of China(Grant 62205322,22090043).
文摘Cubic rock salt can lower down or break the rare earth transition barrier through interstitial or vacancy defects owing to its great deformation and rotationflexibility.Here,we demonstrate that oxygen vacancies in SrO are induced by proper oxidization and atmosphere adjustment,resulting in defects with various depths and crystalfield distortion.The thermally assisted tunneling from defects to 5 D_(4) state and electronic population decrease on 5 D_(3) state of Tb^(3+)þare observed by the deformation of adjacent oxygen octahedral structure.Finally,the asprepared SrO:0.01 Tb^(3+)þphosphors,commercial BaMgAl10O17:Eu^(2+)þblue phosphor,and CaAlSiN3:Eu^(2+)þred phosphor are mixed and coated onto 280 nm deep-ultraviolet LED chip to assemble white light-emitting LED device.The LEDs show CCT of 3850 K,4136 K,and 4741 K,with color rendering index of 90.3,90.8,and 92.1,respectively.These insights will advance the fundamental knowledge of crystal engineering in cubic rock salt,and enable new ways to manipulate energy transfer and electronic transition via defects.