Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,t...Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.展开更多
Nanocarbons,widely and commonly used as supports for supported Pt-based electrocatalysts in PEMFCs,play a significant role in Pt dispersion and accessibility,further determining their corresponding electrocatalytic pe...Nanocarbons,widely and commonly used as supports for supported Pt-based electrocatalysts in PEMFCs,play a significant role in Pt dispersion and accessibility,further determining their corresponding electrocatalytic performance.This paper provides an overview of the nanoarchitectures and surface physicochemical properties of nanocarbons affecting the electrocatalyst performance,with an emphasis on both physical characteristics,including pore structure,and chemical properties,including heteroatom doping and functional carbon-based supports.This review discusses the recent progress in nanocarbon supports,guides the future development direction of PEMFC supports,and provides our own viewpoints for the future research and design of PEMFCs catalysts,advancing the commercialization of PEMFCs.展开更多
Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to elec...Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.展开更多
Heteroatoms doped Fe-N-C electrocatalysts have been widely acknowledged as one of the most promising candidates to replace Pt-based materials for electrocatalyzing oxygen reduction reaction(ORR).However,the complicate...Heteroatoms doped Fe-N-C electrocatalysts have been widely acknowledged as one of the most promising candidates to replace Pt-based materials for electrocatalyzing oxygen reduction reaction(ORR).However,the complicated synthesis method and controversial catalytic mechanism represent a substantial impediment as of today.Herein,a very facile strategy to prepare Fe-N/S-C hybrid through pyrolyzing Zn and Fe bimetallic MOFs is rationally designed.The electrocatalytic ORR performance shows a volcanotype curve with the increment of added Fe content.The half-wave potential(E1/2) for ORR at optimized Fe-N/S-C-10%(10%=n(Fe)/(n(Fe)+n(Zn)),n(Fe) and n(Zn) represent the moles of Fe2+ and Zn2+ in the precursors,respectively) shifts significantly to the positive direction of 19.6 mV with respect to that of Pt/C in acidic media,as well as a high 4 e selectivity and methanol tolerance.After 10,000 potential cycles,E1/2 exhibits a small negative shift of-27.5 mV at Fe-N/S-C-10% compared favorably with Pt/C(~141.0 mV).This can be attributed to:(ⅰ) large specific surface area(849 m^(2)/g) and hierarchically porous structure are favorable for the rapid mass transfer and active sites exposure;(ⅱ) the embedded Fecontaining nanoparticles in porous carbon are difficult to be moved and further agglomerated during the electrochemical accelerated aging test,further improving its stability;(ⅲ) there exist small Fecontaining nanoparticles,uniformly doped N and S,abundant Fe-N as efficiently active sites.This work represents a breakthrough in the development of high-efficient non-precious-metal catalysts(NPMCs)to address the current Pt-based electrocatalysts challenges.展开更多
A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting ...A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.展开更多
To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,an...To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,and anion species.Our results reveal that the formation of an initial cobalt nickel acetate hydroxide prism is the key factor and directly affects the final microtubular structure.Moreover,P is subsequently doped into the Ni/Co_(3)O_(4)lattice to increase the M^(3+)/M^(2+)molar ratio(M=Co and Ni),promote reaction kinetics,and optimize electronic structure.Consequently,the oxygen evolution reaction performance of P-doped tubular Ni/Co_(3)O_(4)is significantly higher than that of undoped Ni/Co_(3)O_(4)and the state-of-the-art RuO_(2)electrocatalyst.展开更多
[Objectives] To analyze volatile components of flowers and leaves of Thymus mongolicus. [Methods]Volatile components of collected T. mongolicus flower and leaves were separated by headspace solid-phase microextraction...[Objectives] To analyze volatile components of flowers and leaves of Thymus mongolicus. [Methods]Volatile components of collected T. mongolicus flower and leaves were separated by headspace solid-phase microextraction( SPME) and identified by gas chromatography/mass spectrometry( GC/MS) and normallized by peak area. [Results] A total of 24 and 14 compounds were identified from flowers and leaves of T. mongolicus in the total ion chromatogram,accounting for 99. 573% and 97. 187% of the total peak area,respectively. Main components of flowers and leaves of T. mongolicus include phenols and terpenes,and thymol accounts for 35. 38% and 49. 13% of flowers and leaves of T. mongolicus,respectively. [Conclusions] SPME-GC/MS can be applied in analyzing volatile components of flowers and leaves of T. mongolicus,to provide basis for further development and utilization of T. mongolicus.展开更多
Oxygen evolution reaction(OER)is the dominant step for plenty of energy conversion and storage technologies.However,the OER suffers from sluggish kinetics and high overpotential due to its complex 4‐electron/proton t...Oxygen evolution reaction(OER)is the dominant step for plenty of energy conversion and storage technologies.However,the OER suffers from sluggish kinetics and high overpotential due to its complex 4‐electron/proton transfer mechanism.Thus,developing efficient electrocatalysts is particularly urgent to accelerate OER catalysis but still remains a great challenge.Herein,we have synthesized the novel cobalt molybdate nanoflakes(CoMoO_(4)‐O_(v)‐n@GF)with adjustable oxygen vacancies contents by in situ constructing CoMoO_(4) nanoflakes on graphite felt(GF)and annealing treatment under the reduction atmosphere.The best‐performing CoMoO_(4)‐O_(v)‐2@GF with optimal oxygen vacancies content shows splendid electrocatalytic performance with the low overpotential(296 mV at 10 mA cm^(‒2))and also small Tafel slope(62.4 mV dec^(‒1))in alkaline solution,which are comparable to those of the RuO_(2)@GF.The experimental and the density functional theory calculations results reveal that the construction of optimal oxygen vacancies in CoMoO_(4) can expose more active sites,narrow the band‐gap to increase the electrical conductivity,and modulate the free energy of the OER‐related intermediates to accelerate OER kinetics,thus improving its intrinsic activity.展开更多
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu...Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.展开更多
The electrochemical oxygen evolution reaction(OER)plays an important role in many clean electrochemical energy storage and conversion systems,such as electrochemical water splitting,rechargeable metal–air batteries,a...The electrochemical oxygen evolution reaction(OER)plays an important role in many clean electrochemical energy storage and conversion systems,such as electrochemical water splitting,rechargeable metal–air batteries,and electrochemical CO_(2) reduction.However,the OER involves a complex four-electron process and suffers from intrinsically sluggish kinetics,which greatly impairs the efficiency of electrochemical systems.In addition,state-of-the-art RuO2-based OER electrocatalysts are too expensive and scarce for practical applications.The development of highly active,cost-effective,and durable electrocatalysts that can improve OER performance(activity and durability)is of significant importance in realizing the widespread application of these advanced technologies.To date,considerable progress has been made in the development of alternative,noble metal-free OER electrocatalysts.Among these alternative catalysts,transition metal compounds have received particular attention and have shown activities comparable to or even higher than those of their precious metal counterparts.In contrast to many other electrocatalysts,such as carbon-based materials,transition metal compounds often exhibit a surface reconstruction phenomenon that is accompanied by the transformation of valence states during electrochemical OER processes.This surface reconstruction results in changes to the true active sites and an improvement or reduction in OER catalytic performance.Therefore,understanding the self-reconstruction process and precisely identifying the true active sites on electrocatalyst surfaces will help us to finely tune the properties and activities of OER catalysts.This review provides a comprehensive summary of recent progress made in understanding the surface reconstruction phenomena of various transition metal-based OER electrocatalysts,focusing on uncovering the correlations among structure,surface reconstruction and intrinsic activity.Recent advances in OER electrocatalysts that exhibit a surface self-reconstruction capability are also discussed.We identify possible challenges and perspectives for the development of OER electrocatalysts based on surface reconstruction.We hope this review will provide readers with some guidance on the rational design of catalysts for various electrochemical reactions.展开更多
基金the financial support of the Training Program of the Major Research Plan of the National Natural Science Foundation of China(92061124)the National Natural Science Foundation of China(21975292,21978331,22068008,and 52101186)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010167 and 2022A1515011196)the Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02)the Guangzhou Basic and Applied Basic Research Project(202201011449)the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220 and FC202216)。
文摘Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.
文摘Nanocarbons,widely and commonly used as supports for supported Pt-based electrocatalysts in PEMFCs,play a significant role in Pt dispersion and accessibility,further determining their corresponding electrocatalytic performance.This paper provides an overview of the nanoarchitectures and surface physicochemical properties of nanocarbons affecting the electrocatalyst performance,with an emphasis on both physical characteristics,including pore structure,and chemical properties,including heteroatom doping and functional carbon-based supports.This review discusses the recent progress in nanocarbon supports,guides the future development direction of PEMFC supports,and provides our own viewpoints for the future research and design of PEMFCs catalysts,advancing the commercialization of PEMFCs.
基金supported by the National Natural Science Foundation of China(21576299,21576300)Guangzhou Science and Technology Project(201607010104,201707010079)+3 种基金Science and Technology Planning Project of Guangdong Province(2017A050501009)the National Key Research and Development Program of China(2016YFB0101204)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2016TQ03N322)the fundamental Research Funds for Central Universities(17lgzd14)~~
文摘Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.
基金financially supported by the National Natural Science Foundation of China (21978331, 21975292, 21905311)the National Key Research and Development Program of China (Program No. 2016YFB0101200 (2016YFB0101204))+5 种基金the Guangdong Basic and Applied Basic Research Foundation (2020A1515010343)the Guangzhou Science and Technology Project (201707010079)the fundamental Research Funds for Central Universities (No. 19lgpy136, 19lgpy116)the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (No. 2016TQ03N322) for financial supportthe China Postdoctoral Science Foundation Grant (No. 2019M653142)the support of the startup grant of “Hundred Talents Program” in Sun Yat-sen University (No. 76110-18841219)。
文摘Heteroatoms doped Fe-N-C electrocatalysts have been widely acknowledged as one of the most promising candidates to replace Pt-based materials for electrocatalyzing oxygen reduction reaction(ORR).However,the complicated synthesis method and controversial catalytic mechanism represent a substantial impediment as of today.Herein,a very facile strategy to prepare Fe-N/S-C hybrid through pyrolyzing Zn and Fe bimetallic MOFs is rationally designed.The electrocatalytic ORR performance shows a volcanotype curve with the increment of added Fe content.The half-wave potential(E1/2) for ORR at optimized Fe-N/S-C-10%(10%=n(Fe)/(n(Fe)+n(Zn)),n(Fe) and n(Zn) represent the moles of Fe2+ and Zn2+ in the precursors,respectively) shifts significantly to the positive direction of 19.6 mV with respect to that of Pt/C in acidic media,as well as a high 4 e selectivity and methanol tolerance.After 10,000 potential cycles,E1/2 exhibits a small negative shift of-27.5 mV at Fe-N/S-C-10% compared favorably with Pt/C(~141.0 mV).This can be attributed to:(ⅰ) large specific surface area(849 m^(2)/g) and hierarchically porous structure are favorable for the rapid mass transfer and active sites exposure;(ⅱ) the embedded Fecontaining nanoparticles in porous carbon are difficult to be moved and further agglomerated during the electrochemical accelerated aging test,further improving its stability;(ⅲ) there exist small Fecontaining nanoparticles,uniformly doped N and S,abundant Fe-N as efficiently active sites.This work represents a breakthrough in the development of high-efficient non-precious-metal catalysts(NPMCs)to address the current Pt-based electrocatalysts challenges.
文摘A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.
文摘To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,and anion species.Our results reveal that the formation of an initial cobalt nickel acetate hydroxide prism is the key factor and directly affects the final microtubular structure.Moreover,P is subsequently doped into the Ni/Co_(3)O_(4)lattice to increase the M^(3+)/M^(2+)molar ratio(M=Co and Ni),promote reaction kinetics,and optimize electronic structure.Consequently,the oxygen evolution reaction performance of P-doped tubular Ni/Co_(3)O_(4)is significantly higher than that of undoped Ni/Co_(3)O_(4)and the state-of-the-art RuO_(2)electrocatalyst.
基金Supported by Natural Science Foundation Project of Inner Mongolia Autonomous Region(2015MS0324)Scientific Research Service Project of Chifeng University(KYFW-16-05)
文摘[Objectives] To analyze volatile components of flowers and leaves of Thymus mongolicus. [Methods]Volatile components of collected T. mongolicus flower and leaves were separated by headspace solid-phase microextraction( SPME) and identified by gas chromatography/mass spectrometry( GC/MS) and normallized by peak area. [Results] A total of 24 and 14 compounds were identified from flowers and leaves of T. mongolicus in the total ion chromatogram,accounting for 99. 573% and 97. 187% of the total peak area,respectively. Main components of flowers and leaves of T. mongolicus include phenols and terpenes,and thymol accounts for 35. 38% and 49. 13% of flowers and leaves of T. mongolicus,respectively. [Conclusions] SPME-GC/MS can be applied in analyzing volatile components of flowers and leaves of T. mongolicus,to provide basis for further development and utilization of T. mongolicus.
文摘Oxygen evolution reaction(OER)is the dominant step for plenty of energy conversion and storage technologies.However,the OER suffers from sluggish kinetics and high overpotential due to its complex 4‐electron/proton transfer mechanism.Thus,developing efficient electrocatalysts is particularly urgent to accelerate OER catalysis but still remains a great challenge.Herein,we have synthesized the novel cobalt molybdate nanoflakes(CoMoO_(4)‐O_(v)‐n@GF)with adjustable oxygen vacancies contents by in situ constructing CoMoO_(4) nanoflakes on graphite felt(GF)and annealing treatment under the reduction atmosphere.The best‐performing CoMoO_(4)‐O_(v)‐2@GF with optimal oxygen vacancies content shows splendid electrocatalytic performance with the low overpotential(296 mV at 10 mA cm^(‒2))and also small Tafel slope(62.4 mV dec^(‒1))in alkaline solution,which are comparable to those of the RuO_(2)@GF.The experimental and the density functional theory calculations results reveal that the construction of optimal oxygen vacancies in CoMoO_(4) can expose more active sites,narrow the band‐gap to increase the electrical conductivity,and modulate the free energy of the OER‐related intermediates to accelerate OER kinetics,thus improving its intrinsic activity.
基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project,Grant/Award Number:20220602JBGS02Guangzhou Basic and Applied Basic Research Project,Grant/Award Number:202201011449+3 种基金Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology,Grant/Award Numbers:FC202220,FC202216Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515010167,2022A1515011196National Natural Science Foundation of China,Grant/Award Numbers:21975292,21978331,22068008,52101186Training Program of the Major Research Plan of the National Natural Science Foundation of China,Grant/Award Number:92061124。
文摘Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.
基金Acknowledgements The authors would like to thank the National Natural Science Foundation of China(21975292,21978331,21905311,92061124)the Guangzhou Science and Technology Project(201707010079)+2 种基金the Guangdong Province Nature Science Foundation(2020A1515010343)the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(No.2016TQ03N322)the Fundamental Research Funds for Central Universities(No19lgpy136,19lgpy116)for financial support.Prof.Tongwen Yu would like to give special thanks to the support of the startup grant provided by the“Hundred Talents Program”at Sun Yatsen University(No.76110-18841219).
文摘The electrochemical oxygen evolution reaction(OER)plays an important role in many clean electrochemical energy storage and conversion systems,such as electrochemical water splitting,rechargeable metal–air batteries,and electrochemical CO_(2) reduction.However,the OER involves a complex four-electron process and suffers from intrinsically sluggish kinetics,which greatly impairs the efficiency of electrochemical systems.In addition,state-of-the-art RuO2-based OER electrocatalysts are too expensive and scarce for practical applications.The development of highly active,cost-effective,and durable electrocatalysts that can improve OER performance(activity and durability)is of significant importance in realizing the widespread application of these advanced technologies.To date,considerable progress has been made in the development of alternative,noble metal-free OER electrocatalysts.Among these alternative catalysts,transition metal compounds have received particular attention and have shown activities comparable to or even higher than those of their precious metal counterparts.In contrast to many other electrocatalysts,such as carbon-based materials,transition metal compounds often exhibit a surface reconstruction phenomenon that is accompanied by the transformation of valence states during electrochemical OER processes.This surface reconstruction results in changes to the true active sites and an improvement or reduction in OER catalytic performance.Therefore,understanding the self-reconstruction process and precisely identifying the true active sites on electrocatalyst surfaces will help us to finely tune the properties and activities of OER catalysts.This review provides a comprehensive summary of recent progress made in understanding the surface reconstruction phenomena of various transition metal-based OER electrocatalysts,focusing on uncovering the correlations among structure,surface reconstruction and intrinsic activity.Recent advances in OER electrocatalysts that exhibit a surface self-reconstruction capability are also discussed.We identify possible challenges and perspectives for the development of OER electrocatalysts based on surface reconstruction.We hope this review will provide readers with some guidance on the rational design of catalysts for various electrochemical reactions.