期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Differential gene expression in proximal and distal nerve segments of rats with sciatic nerve injury during Wallerian degeneration 被引量:5
1
作者 Nan Jiang Huaiqin Li +4 位作者 Yi Sun Dexin Yin Qin Zhao shusen cui Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1186-1194,共9页
Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immun... Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immune response, myelin cell differentiation and dedifferentiation. Although gene expression responses in the distal segment of the sciatic nerve after peripheral nerve injury are known, differences in gene expression between the proximal and distal segments remain unclear. In the present study in rats, we used microarrays to analyze changes in gene expression, biological processes and signaling pathways in the proximal and distal segments of sciatic nerves under- going Wallerian degeneration. More than 6,000 genes were differentially expressed and 20 types of expression tendencies were identified, mainly between proximal and distal segments at 7-14 days after injury. The differentially expressed genes were those involved in cell differentiation, cytokinesis, neuron differentiation, nerve development and axon regeneration. Furthermore, 11 biological processes were represented, related to responses to stimuli, cell apoptosis, inflammato- ry response, immune response, signal transduction, protein kinase activity, and cell proliferation. Using real-time quantitative PCR, western blot analysis and immunohistochemistry, microarray data were verified for four genes: aquaporin-4, interleukin 1 receptor-like 1, matrix metallopro- teinase-12 and periaxin. Our study identifies differential gene expression in the proximal and distal segments of a nerve during Wallerian degeneration, analyzes dynamic biological changes of these genes, and provides a useful platform for the detailed study of nerve injury and repair during Wallerian degeneration. 展开更多
关键词 nerve regeneration peripheral nerve injury Wallerian degeneration sciatic nerve injury MICROARRAY expression profiling biological process RAT NSFC grant neural regeneration
下载PDF
Valproic acid protects neurons and promotes neuronal regeneration after brachial plexus avulsion 被引量:2
2
作者 Qiang Li Dianxiu Wu +2 位作者 Rui Li Xiaojuan Zhu shusen cui 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第30期2838-2848,共11页
Valproic acid has been shown to exert neuroprotective effects and promote neurite outgrowth in several peripheral nerve injury models. However, whether valproic acid can exert its beneficial effect on neurons after br... Valproic acid has been shown to exert neuroprotective effects and promote neurite outgrowth in several peripheral nerve injury models. However, whether valproic acid can exert its beneficial effect on neurons after brachial plexus avulsion injury is currently unknown. In this study, brachial plexus root avulsion models, established in Wistar rats, were administered daily with valproic acid dis-solved in drinking water (300 mg/kg) or normal water. On days 1, 2, 3, 7, 14 and 28 after avulsion injury, tissues of the C 5-T 1 spinal cord segments of the avulsion injured side were harvested to in-vestigate the expression of Bcl-2, c-Jun and growth associated protein 43 by real-time PCR and western blot assay. Results showed that valproic acid significantly increased the expression of Bcl-2 and growth associated protein 43, and reduced the c-Jun expression after brachial plexus avulsion. Our findings indicate that valproic acid can protect neurons in the spinal cord and enhance neuronal regeneration fol owing brachial plexus root avulsion. 展开更多
关键词 neural regeneration peripheral nerve injury brachial plexus root avulsion spinal cord NEURONS valproic acid NEUROPROTECTION neuronal regeneration Bcl-2 c-Jun GAP-43 grants-supported pa-per NEUROREGENERATION
下载PDF
Brain-derived neurotrophic factor expression in dorsal root ganglion neurons in response to reanastomosis of the distal stoma after nerve grafting 被引量:2
3
作者 Wei Yu Jian Wang +2 位作者 Mingzhu Xu Hanjiao Qin shusen cui 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第26期2012-2017,共6页
Studies have shown that retreatment of the distal stoma after nerve grafting can stimulate nerve regeneration. The present study attempted to verify the effects of reanastomosis of the distal stoma, after nerve grafti... Studies have shown that retreatment of the distal stoma after nerve grafting can stimulate nerve regeneration. The present study attempted to verify the effects of reanastomosis of the distal stoma, after nerve grafting, on nerve regeneration by assessing brain-derived neurotrophic factor expression in 2-month-old rats. Results showed that brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after autologous nerve grafting post sciatic nerve injury, peaked at 14 days, decreased at 28 days, and reached similar levels to the sham-surgery group at 56 days. Brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after reanastomosis of the distal stoma, 59 days after autologous nerve grafting post sciatic nerve injury, significantly increased at 63 days, peaked at 70 days, and gradually decreased thereafter, but remained higher compared with the sham-surgery group up to 112 days. The results of this study indicate that reanastomosis of the distal stoma after orthotopic nerve grafting stimulated brain-derived neurotrophic factor expression in L2.4 dorsal root ganglia. 展开更多
关键词 sciatic nerve orthotopic nerve grafting brain-derived neurotrophic factor dorsal root ganglion distalstoma reanastomosis peripheral nerve injury neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部