期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Metal-Organic Framework Materials for Electrochemical Supercapacitors 被引量:4
1
作者 Ziwei Cao Roya Momen +10 位作者 shusheng tao Dengyi Xiong Zirui Song Xuhuan Xiao Wentao Deng Hongshuai Hou Sedat Yasar Sedar Altin Faith Bulut Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期172-204,共33页
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems.Metal-organic frameworks(MOFs),as a new type of porous material,show the advantages o... Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems.Metal-organic frameworks(MOFs),as a new type of porous material,show the advantages of large specific surface area,high porosity,low density,and adjustable pore size,exhibiting a broad application prospect in the field of electrocatalytic reactions,batteries,particularly in the field of supercapacitors.This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials,as well as their applications in supercapacitors.Additionally,the superiorities of MOFs-related materials are highlighted,while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed,along with extensive experimental experiences. 展开更多
关键词 Metal-organic frameworks(MOFs) ELECTROCHEMISTRY SUPERCAPACITORS Electrode materials
下载PDF
K_(x)C_(y) phase induced expanded interlayer in ultra-thin carbon toward full potassium-ion capacitors 被引量:1
2
作者 Xinglan Deng Ye Tian +8 位作者 Kangyu Zou Jun Chen Xuhuan Xiao shusheng tao Zirui Song Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Carbon Energy》 SCIE CAS 2022年第6期1151-1168,共18页
Carbonaceous materials have been regarded as highly promising anode candidates for potassium storage with their cost-effectiveness and environmental benignity.However,low specific capacity and difficulty in large-scal... Carbonaceous materials have been regarded as highly promising anode candidates for potassium storage with their cost-effectiveness and environmental benignity.However,low specific capacity and difficulty in large-scale synthesis largely hinder their further development.Herein,a thermal-induced potassium–carbon alloy phase(K_(x)C_(y))with the expanded interlayer spacing strategy is first put forward.Through in situ high-temperature X-ray diffraction,a K_(2)C_(2) phase is evoked by thermal energy during the in-situ carbonization process of carbon quantum dots intermediate derived from potassium-containing precursors,whereas no lithium or sodium–carbon alloy phase is observed from lithium/sodium-containing precursors.The asobtained ultra-thin carbon nanosheets achieve adjustable layer spacing,preparation in bulk,delivering reversible potassium storage of 403.4 mAh g^(−1) at 100 mA g^(−1) and 161.2 mAh g^(−1) even at 5.0 A g^(−1),which is one of the most impressive K-storage performances reported so far with great potential application.Furthermore,the assembled potassium-ion hybrid capacitor by combining the impressive CFMs-900 anode with the three-dimensional framework-activated carbon delivers a high energy-power density of 251.7 Wh kg^(−1) at 250Wkg^(−1) with long-term stability.This study opens a scalable avenue to realize the expanded interlayer spacing,which can be extended to other multicarboxyl potassium salts and can provide approach for the design of high-performance carbon anode materials for potassium storage. 展开更多
关键词 expanded interlayer K_(x)C_(y)phase potassium-ion capacitors themal-induced ultra-thin carbon
下载PDF
High-yield red phosphorus sponge mediated robust lithium-sulfur battery
3
作者 Zheng Luo shusheng tao +6 位作者 Ye Tian Hanyu Tu Laiqiang Xu Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano Research》 SCIE EI CSCD 2023年第6期8329-8337,共9页
Although lithium-sulfur(Li-S)batteries with high specific energy exhibit great potential for next-generation energy-storage systems,their practical applications are limited by the growth of Li dendrites and lithium po... Although lithium-sulfur(Li-S)batteries with high specific energy exhibit great potential for next-generation energy-storage systems,their practical applications are limited by the growth of Li dendrites and lithium polysulfides(LiPSs)shuttling.Herein,a highly porous red phosphorus sponge(HPPS)with well distributed pore structure was efficiently prepared via a facile and largescale hydrothermal process for polysulfides adsorption and dendrite suppression.As experimental demonstrated,the porous red phosphorus modified separator with increased active site greatly promotes the chemisorption of LiPSs to efficiently immobilize the active sulfur within the cathode section,while Li metal anode activated by Li_(3)P interlayer with abundant ionically conductive channels significantly eliminates the barrier for uniform Li^(+)permeation across the interlayer,contributing to the enhanced stability for both S cathode and Li anode.Mediated by the HPPS,long-term stability of 1,200 h with minor voltage hysteresis is achieved in symmetric cells with Li_(3)P@Li electrode while Li-S half-cell based on HPPS modified separator delivers an outperformed reversibility of 783.0 mAh·g^(−1)after 300 cycles as well as high-rate performance of 694.5 mAh·g^(−1)at 3 C,which further boosts the HPPS tuned full cells in practical S loading(3 mg·cm^(−2))and thin Li3P@Li electrode(100μm)with a capacity retention of 71.8%after 200 cycles at 0.5 C.This work provides a cost-effective and metal free mediator for simultaneously alleviating the fundamental issues of both S cathode and Li anode towards high energy density and long cycle life Li-S full batteries. 展开更多
关键词 lithium-sulfur battery red phosphorus sponge SEPARATOR chemical adsorption Li dendrite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部