This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sus...This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.展开更多
Tumor-associated macrophages(TAMs)play crucial roles in tumor progression and immune responses.However,mechanisms of driving TAMs to antitumor function remain unknown.Here,transcriptome profiling analysis of human ora...Tumor-associated macrophages(TAMs)play crucial roles in tumor progression and immune responses.However,mechanisms of driving TAMs to antitumor function remain unknown.Here,transcriptome profiling analysis of human oral cancer tissues indicated that regulator of G protein signaling 12(RGS12)regulates pathologic processes and immune-related pathways.Mice with RGS12knockout in macrophages displayed decreased M1 TAMs in oral cancer tissues,and extensive proliferation and invasion of oral cancer cells.RGS12 increased the M1 macrophages with features of increased ciliated cell number and cilia length.Mechanistically,RGS12 associates with and activates MYC binding protein 2(MYCBP2)to degrade the cilia protein kinesin family member 2A(KIF2A)in TAMs.Our results demonstrate that RGS12 is an essential oral cancer biomarker and regulator for immunosuppressive TAMs activation.展开更多
As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and slugg...As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and sluggish kinetics,resulting in capacity fading and poor rate performance.Herein,we develop an interface engineering strategy to substantially enhance the sodium storage performance of MoS2 by incorporating layered MoS2 into three dimensional N-doped graphene scaffold.The strong coupling-interface between MoS2 and N-doped graphene scaffold can not only stabilize the MoS2 structure during sodium insertion/extraction processes,but also provide plenty of anchor sites for additional surface sodium storage.The 3D MoS2@N-doped graphene composite as anode for SIBs performs an outstanding specific capacity of 667.3 mA h g^-1 at 0.2 A g^-1,a prolonged stability with a capacity retention of 94.4%after 140cycles and excellent rate capability of 445 mA h g^-1 even at a high rate of 10 A g^-1.We combined experiment and theoretical simulation to further disclose the interaction between MoS2 and N-doped graphene,adsorption and diffusion of sodium on the composite and the corresponding sodium storage mechanism.This study opens a new door to develop high performance SIBs by introducing the interface engineering technique.展开更多
Type II collagen-positive(Col2^(+))cells have been reported as skeletal stem cells(SSCs),but the contribution of Col2^(+)progenitors to skeletal development both prenatally and postnatally during aging remains unclear...Type II collagen-positive(Col2^(+))cells have been reported as skeletal stem cells(SSCs),but the contribution of Col2^(+)progenitors to skeletal development both prenatally and postnatally during aging remains unclear.To address this question,we generated new mouse models with ablation of Col2^(+)cells at either the embryonic or postnatal stages.The embryonic ablation of Col2^(+)progenitors resulted in the death of newborn mice due to a decrease in skeletal blood vessels,loss of all vertebral bones and absence of most other bones except part of the craniofacial bone,the clavicle bone and a small piece of the long bone and ribs,which suggested that intramembranous ossification is involved in long bone development but does not participate in spine development.The postnatal ablation of Col2^(+)cells resulted in mouse growth retardation and a collagenopathy phenotype.Lineage tracing experiments with embryonic or postnatal mice revealed that Col2^(+)progenitors occurred predominantly in the growth plate(GP)and articular cartilage,but a limited number of Col2^(+)cells were detected in the bone marrow.Moreover,the number and differentiation ability of Col2^(+)progenitors in the long bone and knee joints decreased with increasing age.The fate-mapping study further revealed Col2^(+)lineage cells contributed to,in addition to osteoblasts and chondrocytes,CD31^(+)blood vessels in both the calvarial bone and long bone.Specifically,almost all blood vessels in calvarial bone and 25.4%of blood vessels in long bone were Col2^(+)lineage cells.However,during fracture healing,95.5%of CD31^(+)blood vessels in long bone were Col2^(+)lineage cells.In vitro studies further confirmed that Col2^(+)progenitors from calvarial bone and GP could form CD31^(+)vascular lumens.Thus,this study provides the first demonstration that intramembranous ossification is involved in long bone and rib development but not spine development.Col2^(+)progenitors contribute to CD31^(+)skeletal blood vessel formation,but the percentage differs between long bone and skull bone.The number and differentiation ability of Col2^(+)progenitors decreases with increasing age.展开更多
The teaching of Packaging Design started late in China,but develops fast.After experiencing the changes of economy,politics and culture,it has entered a new era of self-publicity.The Chinese style has come out quietly...The teaching of Packaging Design started late in China,but develops fast.After experiencing the changes of economy,politics and culture,it has entered a new era of self-publicity.The Chinese style has come out quietly with a strong momentum.The contents of packaging design in the new era pay more attention to the spiritual level,and become a bridge between the society and people,forming an aesthetics concept with the spirit of the Chinese people.Based on the application of Chinese style in the course of Packaging Design,this paper discusses the characteristics of Packaging Design with Chinese style and the problems of traditional Packaging Design,and puts forward how to better apply Chinese elements in Packaging Design.展开更多
Tethys tectonic system has experienced a long-term evolution history,including multiple Wilson cycles;thus,it is an ideal target for analyzing plate tectonics and geodynamics.Tethyan evolution is typically characteriz...Tethys tectonic system has experienced a long-term evolution history,including multiple Wilson cycles;thus,it is an ideal target for analyzing plate tectonics and geodynamics.Tethyan evolution is typically characterized by a series of continental blocks that separated from the Gondwana in the Southern Hemisphere,drifted northward,and collided and accreted with Laurasia in the Northern Hemisphere.During this process,the successive opening and closing of multistage Tethys oceans(e.g.,Proto-Tethys,Paleo-Tethys,and Neo-Tethys)are considered core parts of the Tethyan evolution.Herein,focusing on the life cycle of an oceanic plate,four key geodynamic processes during the Tethyan evolution,namely,continental margin breakup,subduction initiation(SI),Mid-Ocean Ridge(MOR)subduction,and continental collision,were highlighted and dynamically analyzed to gather the following insights.(1)Breakup of the narrow continental margin terranes from the northern Gondwana is probably controlled by plate subduction,particularly the subduction-induced far-field stretching.The breakup of the Indian continent and the subsequent spreading of the Indian Ocean can be attributed to the interactions between multiple mantle plumes and slab drag-induced far-field stretching.(2)Continental margin terrane collision-induced subduction transference/jump is a key factor in progressive Tethyan evolution,which is driven by the combined forces of collision-induced reverse push,far-field ridge push,and mantle flow traction.Moreover,lithospheric weakening plays an important role in the occurrence of SI.(3)MOR subduction is generally accompanied by slab break-off.In case of the considerably reduced or temporary absence of slab pull,mantle flow traction may contribute to the progression of plate subduction.MOR subduction can dynamically influence the overriding and downgoing plates by producing important and diagnostic geological records.(4)The large gravitational potential energy of the Tibetan Plateau indicates that the long-lasting India-Asia continental collision requires other driving forces beyond the far-field ridge push.Further,the mantle flow traction is a good candidate that may considerably contribute to the continuous collision.The possible future SI in the northern Indian Ocean will release the sustained convergent force and cause the collapse of the Tibetan Plateau.Based on the integration of these four geodynamic processes and their driving forces,a“multienginedriving”model is proposed for the dynamics of Tethyan evolution,indicating that the multiple stages of Tethys oceanic subduction provide the main driving force for the northward drifting of continental margin terranes.However,the subducting slab pull may be considerably reduced or even lost during tectonic transitional processes,such as terrane collision or MOR subduction.In such stages,the far-field ridge push and mantle flow traction will induce the initiation of new subduction zones,driving the continuous northward convergence of the Tethys tectonic system.展开更多
Cu-C co-coated LiFePO4 (LiFePO4/(C + Cu)) cathode material was successfully prepared through solid state reduction reaction. The optimized additive amount of CuO was determined by electrochemical test of series c...Cu-C co-coated LiFePO4 (LiFePO4/(C + Cu)) cathode material was successfully prepared through solid state reduction reaction. The optimized additive amount of CuO was determined by electrochemical test of series content-dependent samples. Electrochemical performances of LiFePO4/(C + Cu) cathode material were investigated. Crystalline structure, morphology and electrochemical performance of the samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), charge-discharge tests and AC impedance techniques. Results showed that crystal structure of the bulk material was not destroyed after Cu particles distributed on the surface of LiFePO4/C. With 5 wt% CuO additive, the LiFePO4/(C + Cu) cathode material showed improved electrochemical performance especially at high rates and low temperature. At 25 ℃ and 0.1 C current rate, specific capacity of the Cu-coated sample reaches 161.3 mA h/g. The result was 47 mA h/g higher than that of the un-coated one. At -20 ℃, the discharge capacity of Cu-coated materials was 113.4 mA h/g at 0.1 C rate and 83.8 mA h/g at 5 C rate, which reached about 70% of that at room temperature, respectively.展开更多
Ubiquitination has important functions in osteoarthritis(OA),yet the mechanism remains unclear.Here,we identify the regulator of G protein signaling 12(RGS12)in macrophages,which promotes the association between ubiqu...Ubiquitination has important functions in osteoarthritis(OA),yet the mechanism remains unclear.Here,we identify the regulator of G protein signaling 12(RGS12)in macrophages,which promotes the association between ubiquitin and IκB during inflammation.We also find that RGS12 promotes the degradation of IκB through enhancing the ubiquitination whereas the process can be inhibited by MG132.Moreover,the increased ubiquitination further inhibits the expression of MTAP,which can indirectly activate the phosphorylation of IκB.Finally,due to the degradation of IκB,the NF-κB translocates into the nucleus and further promotes the gene expression of cytokines such as IL1β,IL6,and TNFαduring inflammation.Importantly,RGS12 deficiency prevents ubiquitination and inflammation in surgically or chemically induced OA.We conclude that the lack of RGS12 in macrophages interferes with the ubiquitination and degradation of IκB,thereby preventing inflammation and cartilage damage.Our results provide evidence for the relevance of RGS12 in promoting inflammation and regulating immune signaling.展开更多
基金the Nord Forsk-funded Nordic Centre of Excellence project (Award 766654) Arctic Climate Predictions: Pathways to Resilient,Sustainable Societies (ARCPATH)National Science Foundation Award 212786 Synthesizing Historical Sea-Ice Records to Constrain and Understand Great Sea-Ice Anomalies (ICEHIST) PI Martin MILES,Co-PI Astrid OGILVIE+12 种基金American-Scandinavian Foundation Award Whales and Ice: Marine-mammal subsistence use in times of famine in Iceland ca.A.D.1600–1900 (ICEWHALE),PI Astrid OGILVIESocial Sciences and Humanities Research Council of Canada Award 435-2018-0194 Northern Knowledge for Resilience,Sustainable Environments and Adaptation in Coastal Communities (NORSEACC),PI Leslie KING,Co-PI,Astrid OGILVIEToward Just,Ethical and Sustainable Arctic Economies,Environments and Societies (JUSTNORTH).EU H2020 (https://www.svs.is/en/ projects/ongoing-projects/justnorth-2020-2023)INTO THE OCEANIC by Elizabeth OGILVIE and Robert PAGE (https://www.intotheo ceanic.org/introduction)Proxy Assimilation for Reconstructing Climate and Improving Model (PARCIM) funded by the Bjerknes Centre for Climate Research,led by Fran?ois COUNILLON,PI Noel KEENLYSIDEAccelerated Arctic and Tibetan Plateau Warming: Processes and Combined Impact on Eurasian Climate (COMBINED),Research Council of Norway (Grant No.328935),Led by Noel KEENLYSIDEArven etter Nansen programme (the Nansen Legacy Project),Research Council of Norway (Grant No.276730),PI Noel KEENLYSIDEBjerknes Climate Prediction Unit,funded by Trond Mohn Foundation (Grant BFS2018TMT01) Centre for Research-based Innovation Climate Futures,Research Council of Norway (Grant No.309562),PIs Noel KEENLYSIDE,Francois COUNILLONDeveloping and Advancing Seasonal Predictability of Arctic Sea Ice (4ICE),Research Council of Norway (Grant No.254765),PI Francois COUNILLONTropical and South Atlantic Climate-Based Marine Ecosystem Prediction for Sustainable Management (TRIATLAS) European Union Horizon 2020 (Grant No.817578),led by Noel KEENLYSIDE,PI Fran?ois COUNILLONImpetus4Change,European Union Horizon Europe (Grant No.101081555),PIs Noel KEENLYSIDE,Fran?ois COUNILLONLaboratory for Climate Predictability,Russian Megagrant funded by Ministry of Science and Higher Education of the Russian Federation (Agreement No.075-15-2021-577),led by Noel KEENLYSIDE,PI Segey GULEVRapid Arctic Environmental Changes: Implications for Well-Being,Resilience and Evolution of Arctic Communities (RACE),Belmont Forum (RCN Grant No.312017),PIs Sergey GULEV and Noel KEENLYSIDE。
文摘This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.
基金supported by National Institutes of Health(NIH)grants AG048388 and AR066101 to Dr.Shuying Yangsupported by U.S.Department of Defense(DOD)grants PR201467 and RA210159 to Dr.Shuying Yang。
文摘Tumor-associated macrophages(TAMs)play crucial roles in tumor progression and immune responses.However,mechanisms of driving TAMs to antitumor function remain unknown.Here,transcriptome profiling analysis of human oral cancer tissues indicated that regulator of G protein signaling 12(RGS12)regulates pathologic processes and immune-related pathways.Mice with RGS12knockout in macrophages displayed decreased M1 TAMs in oral cancer tissues,and extensive proliferation and invasion of oral cancer cells.RGS12 increased the M1 macrophages with features of increased ciliated cell number and cilia length.Mechanistically,RGS12 associates with and activates MYC binding protein 2(MYCBP2)to degrade the cilia protein kinesin family member 2A(KIF2A)in TAMs.Our results demonstrate that RGS12 is an essential oral cancer biomarker and regulator for immunosuppressive TAMs activation.
基金supported by the National Natural Science Foundation of China(Grant No.U1904187 and 21501049)the Fund of Key Scientific and Technological Project of Henan Province(No.182102410081)the High Performance Computing Center of Henan Normal University。
文摘As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and sluggish kinetics,resulting in capacity fading and poor rate performance.Herein,we develop an interface engineering strategy to substantially enhance the sodium storage performance of MoS2 by incorporating layered MoS2 into three dimensional N-doped graphene scaffold.The strong coupling-interface between MoS2 and N-doped graphene scaffold can not only stabilize the MoS2 structure during sodium insertion/extraction processes,but also provide plenty of anchor sites for additional surface sodium storage.The 3D MoS2@N-doped graphene composite as anode for SIBs performs an outstanding specific capacity of 667.3 mA h g^-1 at 0.2 A g^-1,a prolonged stability with a capacity retention of 94.4%after 140cycles and excellent rate capability of 445 mA h g^-1 even at a high rate of 10 A g^-1.We combined experiment and theoretical simulation to further disclose the interaction between MoS2 and N-doped graphene,adsorption and diffusion of sodium on the composite and the corresponding sodium storage mechanism.This study opens a new door to develop high performance SIBs by introducing the interface engineering technique.
基金supported by the National Institute of Dental and Craniofacial Research, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, and the National Institute on Aging, part of the National Institutes of Health, under Award Numbers DE023105, AR066101 and AG048388Department of Defense office of the Congressionally Directed Medical Research Programs (CDMRP), under Award Number of RA210159 to SY+2 种基金sponsored by the Shanghai Sailing Program (21YF1436400)National Natural Science Foundation of China (82102608) to XLsupported by the China Scholarship Council (CSC) Grant #201706260178。
文摘Type II collagen-positive(Col2^(+))cells have been reported as skeletal stem cells(SSCs),but the contribution of Col2^(+)progenitors to skeletal development both prenatally and postnatally during aging remains unclear.To address this question,we generated new mouse models with ablation of Col2^(+)cells at either the embryonic or postnatal stages.The embryonic ablation of Col2^(+)progenitors resulted in the death of newborn mice due to a decrease in skeletal blood vessels,loss of all vertebral bones and absence of most other bones except part of the craniofacial bone,the clavicle bone and a small piece of the long bone and ribs,which suggested that intramembranous ossification is involved in long bone development but does not participate in spine development.The postnatal ablation of Col2^(+)cells resulted in mouse growth retardation and a collagenopathy phenotype.Lineage tracing experiments with embryonic or postnatal mice revealed that Col2^(+)progenitors occurred predominantly in the growth plate(GP)and articular cartilage,but a limited number of Col2^(+)cells were detected in the bone marrow.Moreover,the number and differentiation ability of Col2^(+)progenitors in the long bone and knee joints decreased with increasing age.The fate-mapping study further revealed Col2^(+)lineage cells contributed to,in addition to osteoblasts and chondrocytes,CD31^(+)blood vessels in both the calvarial bone and long bone.Specifically,almost all blood vessels in calvarial bone and 25.4%of blood vessels in long bone were Col2^(+)lineage cells.However,during fracture healing,95.5%of CD31^(+)blood vessels in long bone were Col2^(+)lineage cells.In vitro studies further confirmed that Col2^(+)progenitors from calvarial bone and GP could form CD31^(+)vascular lumens.Thus,this study provides the first demonstration that intramembranous ossification is involved in long bone and rib development but not spine development.Col2^(+)progenitors contribute to CD31^(+)skeletal blood vessel formation,but the percentage differs between long bone and skull bone.The number and differentiation ability of Col2^(+)progenitors decreases with increasing age.
文摘The teaching of Packaging Design started late in China,but develops fast.After experiencing the changes of economy,politics and culture,it has entered a new era of self-publicity.The Chinese style has come out quietly with a strong momentum.The contents of packaging design in the new era pay more attention to the spiritual level,and become a bridge between the society and people,forming an aesthetics concept with the spirit of the Chinese people.Based on the application of Chinese style in the course of Packaging Design,this paper discusses the characteristics of Packaging Design with Chinese style and the problems of traditional Packaging Design,and puts forward how to better apply Chinese elements in Packaging Design.
基金a review of the geodynamic studies and extended thoughts during the past four years (2019–2022)in the platform of“Major Research Plan on Tethys Geodynamic System”funded by the National Natural Science Foundation of China (Grant No.91855208)supported by the National Natural Science Fundation of China for Distinguished Young Scholars (Grant No.42225403)。
文摘Tethys tectonic system has experienced a long-term evolution history,including multiple Wilson cycles;thus,it is an ideal target for analyzing plate tectonics and geodynamics.Tethyan evolution is typically characterized by a series of continental blocks that separated from the Gondwana in the Southern Hemisphere,drifted northward,and collided and accreted with Laurasia in the Northern Hemisphere.During this process,the successive opening and closing of multistage Tethys oceans(e.g.,Proto-Tethys,Paleo-Tethys,and Neo-Tethys)are considered core parts of the Tethyan evolution.Herein,focusing on the life cycle of an oceanic plate,four key geodynamic processes during the Tethyan evolution,namely,continental margin breakup,subduction initiation(SI),Mid-Ocean Ridge(MOR)subduction,and continental collision,were highlighted and dynamically analyzed to gather the following insights.(1)Breakup of the narrow continental margin terranes from the northern Gondwana is probably controlled by plate subduction,particularly the subduction-induced far-field stretching.The breakup of the Indian continent and the subsequent spreading of the Indian Ocean can be attributed to the interactions between multiple mantle plumes and slab drag-induced far-field stretching.(2)Continental margin terrane collision-induced subduction transference/jump is a key factor in progressive Tethyan evolution,which is driven by the combined forces of collision-induced reverse push,far-field ridge push,and mantle flow traction.Moreover,lithospheric weakening plays an important role in the occurrence of SI.(3)MOR subduction is generally accompanied by slab break-off.In case of the considerably reduced or temporary absence of slab pull,mantle flow traction may contribute to the progression of plate subduction.MOR subduction can dynamically influence the overriding and downgoing plates by producing important and diagnostic geological records.(4)The large gravitational potential energy of the Tibetan Plateau indicates that the long-lasting India-Asia continental collision requires other driving forces beyond the far-field ridge push.Further,the mantle flow traction is a good candidate that may considerably contribute to the continuous collision.The possible future SI in the northern Indian Ocean will release the sustained convergent force and cause the collapse of the Tibetan Plateau.Based on the integration of these four geodynamic processes and their driving forces,a“multienginedriving”model is proposed for the dynamics of Tethyan evolution,indicating that the multiple stages of Tethys oceanic subduction provide the main driving force for the northward drifting of continental margin terranes.However,the subducting slab pull may be considerably reduced or even lost during tectonic transitional processes,such as terrane collision or MOR subduction.In such stages,the far-field ridge push and mantle flow traction will induce the initiation of new subduction zones,driving the continuous northward convergence of the Tethys tectonic system.
基金the Henan Province Foundation and Advanced Technology Research Program (No.102300410256)the Key Scientifc and Technological Project of Henan Province (No.102102210183)the Natural Science Research Project of Henan Province (No.2011B480005)
文摘Cu-C co-coated LiFePO4 (LiFePO4/(C + Cu)) cathode material was successfully prepared through solid state reduction reaction. The optimized additive amount of CuO was determined by electrochemical test of series content-dependent samples. Electrochemical performances of LiFePO4/(C + Cu) cathode material were investigated. Crystalline structure, morphology and electrochemical performance of the samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), charge-discharge tests and AC impedance techniques. Results showed that crystal structure of the bulk material was not destroyed after Cu particles distributed on the surface of LiFePO4/C. With 5 wt% CuO additive, the LiFePO4/(C + Cu) cathode material showed improved electrochemical performance especially at high rates and low temperature. At 25 ℃ and 0.1 C current rate, specific capacity of the Cu-coated sample reaches 161.3 mA h/g. The result was 47 mA h/g higher than that of the un-coated one. At -20 ℃, the discharge capacity of Cu-coated materials was 113.4 mA h/g at 0.1 C rate and 83.8 mA h/g at 5 C rate, which reached about 70% of that at room temperature, respectively.
基金supported by grants from the National Institute on Aging(NIA)(No.AG048388)National Institute of Arthritis and Musculoskeletal and Skin Diseases(NIAMS)(No.AR066101)to S Yangsupported by grant from the Penn Center for Musculoskeletal Disorders(PCMD),NIH/NIAMS P30-AR069619.
文摘Ubiquitination has important functions in osteoarthritis(OA),yet the mechanism remains unclear.Here,we identify the regulator of G protein signaling 12(RGS12)in macrophages,which promotes the association between ubiquitin and IκB during inflammation.We also find that RGS12 promotes the degradation of IκB through enhancing the ubiquitination whereas the process can be inhibited by MG132.Moreover,the increased ubiquitination further inhibits the expression of MTAP,which can indirectly activate the phosphorylation of IκB.Finally,due to the degradation of IκB,the NF-κB translocates into the nucleus and further promotes the gene expression of cytokines such as IL1β,IL6,and TNFαduring inflammation.Importantly,RGS12 deficiency prevents ubiquitination and inflammation in surgically or chemically induced OA.We conclude that the lack of RGS12 in macrophages interferes with the ubiquitination and degradation of IκB,thereby preventing inflammation and cartilage damage.Our results provide evidence for the relevance of RGS12 in promoting inflammation and regulating immune signaling.