In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor anal...In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.展开更多
Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified thresho...Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified threshold value. As such, the scores must be normalized. To tackle the shortcomings of score normalization methods, we propose a speaker verification system based on log-likelihood normalization (LLN). Without a priori knowledge, LLN increases the separation between scores of target and non-target speaker models, so as to improve score aliasing of “same-speaker” and “different-speaker” trials corresponding to the same test speech, enabling better discrimination and decision capability. The experiment shows that LLN is an effective method of scoring normalization.展开更多
文摘In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.
文摘Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified threshold value. As such, the scores must be normalized. To tackle the shortcomings of score normalization methods, we propose a speaker verification system based on log-likelihood normalization (LLN). Without a priori knowledge, LLN increases the separation between scores of target and non-target speaker models, so as to improve score aliasing of “same-speaker” and “different-speaker” trials corresponding to the same test speech, enabling better discrimination and decision capability. The experiment shows that LLN is an effective method of scoring normalization.