The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilita...The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilitate infection and symptom development have not been fully elucidated.Most plant viruses are transmitted by insect vectors in the field,but the molecular mechanisms underlying virus-host-insect interactions are unclear.In this study,we investigated the interactions among wheat,barley yellow dwarf virus(BYDV),and its aphid vector and found that the BYDV movement protein(MP)interacts with both wheat catalases(CATs)and the 26S proteasomeubiquitin receptor non-ATPase regulatorysubunit2homolog(PSMD2)to facilitate the 26S proteasome-mediateddegradation of CATs,promotingviral infection,disease symptom development,and aphid transmission.Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs,which leading to increased accumulation of ROS and thereby enhanced viral infection.Interestingly,transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids.Consistent with this observation,silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids.In contrast,transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV.Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner.Collectively,our study reveals a molecular mechanism by which a plant virus manipulates the Ros production system of host plants to facilitate viral infection and transmission,shedding new light on the sophisticated interactions among viruses,host plants,and insect vectors.展开更多
基金supported by grants to Y.Wu and L.Z.from the Shaanxi Key Research and Development Program(No.2022KWZ-11)the Ministry of Science and Technology Plans to Introduce High-End Foreign Experts(G2022172015L)the National Natural Science Foundation of China(Nos.32372501 and 31701761).
文摘The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilitate infection and symptom development have not been fully elucidated.Most plant viruses are transmitted by insect vectors in the field,but the molecular mechanisms underlying virus-host-insect interactions are unclear.In this study,we investigated the interactions among wheat,barley yellow dwarf virus(BYDV),and its aphid vector and found that the BYDV movement protein(MP)interacts with both wheat catalases(CATs)and the 26S proteasomeubiquitin receptor non-ATPase regulatorysubunit2homolog(PSMD2)to facilitate the 26S proteasome-mediateddegradation of CATs,promotingviral infection,disease symptom development,and aphid transmission.Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs,which leading to increased accumulation of ROS and thereby enhanced viral infection.Interestingly,transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids.Consistent with this observation,silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids.In contrast,transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV.Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner.Collectively,our study reveals a molecular mechanism by which a plant virus manipulates the Ros production system of host plants to facilitate viral infection and transmission,shedding new light on the sophisticated interactions among viruses,host plants,and insect vectors.