In the chemical looping with oxygen uncoupling(CLOU)process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combusti...In the chemical looping with oxygen uncoupling(CLOU)process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the decoupling rate of oxygen carrier(OC).Hence,high temperature tolerance and rapid oxygen release rate of CuO modified by three different ores were investigated in this study.The kinetics analysis of oxygen decoupling with Cu-based oxygen carriers was also evaluated.Results showed that CuO modified by chrysolite had faster oxygen release rate than that of CuO.Limestone showed obvious positive effect on the oxidization process.The selected OCs could keep stable in at least 20 cycles,for about 1200 min.Shrinking core model(SCM)fitted well for the decoupling process in the temperature range of 1123-1223 K.Reduction rate kinetic information may aid in the development of chemical looping with oxygen uncoupling(CLOU)technologies during reactor design and process modeling.Ternary doped copper oxide with chrysolite and limestone could improve the reactivity of CuO in decoupling and coupling process and also improve the high temperature tolerance.展开更多
Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. Howeve...Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously.展开更多
基金financial support by the Fundamental Research Funds for the Central Universities(xjh012019019)the National Natural Science Foundation of China(51606087)。
文摘In the chemical looping with oxygen uncoupling(CLOU)process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the decoupling rate of oxygen carrier(OC).Hence,high temperature tolerance and rapid oxygen release rate of CuO modified by three different ores were investigated in this study.The kinetics analysis of oxygen decoupling with Cu-based oxygen carriers was also evaluated.Results showed that CuO modified by chrysolite had faster oxygen release rate than that of CuO.Limestone showed obvious positive effect on the oxidization process.The selected OCs could keep stable in at least 20 cycles,for about 1200 min.Shrinking core model(SCM)fitted well for the decoupling process in the temperature range of 1123-1223 K.Reduction rate kinetic information may aid in the development of chemical looping with oxygen uncoupling(CLOU)technologies during reactor design and process modeling.Ternary doped copper oxide with chrysolite and limestone could improve the reactivity of CuO in decoupling and coupling process and also improve the high temperature tolerance.
基金supported by the National High Technology Research and Development Program of China (No.2006AA06Z313)the Program for New Century Excellent Talents in University of Chinese Education Ministry (No.NCET-07-0678)the Opened Fund of Jiangsu Key Lab for Clean Energy and Power Machinery Engineering (No.QK08003)
文摘Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously.