期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Using Deep Learning for Soybean Pest and Disease Classification in Farmland 被引量:3
1
作者 si meng-min Deng Ming-hui Han Ye 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第1期64-72,共9页
To accurately identify soybean pests and diseases, in this paper, a kind of deep convolution network model was used to determine whether or not a soybean crop possessed pests and diseases. The proposed deep convolutio... To accurately identify soybean pests and diseases, in this paper, a kind of deep convolution network model was used to determine whether or not a soybean crop possessed pests and diseases. The proposed deep convolution network could learn the highdimensional feature representation of images by using their depth. An inception module was used to construct a neural network. In the inception module, multiscale convolution kernels were used to extract the distributed characteristics of soybean pests and diseases at different scales and to perform cascade fusion. The model then trained the SoftMax classifier in a uniformed framework. This realized the model of soybean pests and diseases so as to verify the effectiveness of this method. In this study, 800 images of soybean leaf images were taken as the experimental objects. Of these 800 images, 400 were selected for network training, and the remaining 400 images were used for the network test. Furthermore, the classical convolutional neural network was optimized. The accuracies before and after optimization were 96.25% and 95.81%, respectively, in terms of extracting image features. This type of research might be applied to achieve a degree of automation in agricultural field management. 展开更多
关键词 deep learning support VECTOR machine(SVM) K-nearest neighbor(KNN) SOYBEAN PEST and disease
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部