Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine suc...Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.展开更多
BACKGROUND Cancer stem cells(CSCs) have been implicated in tumorigenesis and tumor recurrence and metastasis are key therapeutic targets in cancer treatment.MicroRNAs display therapeutic potential by controlling the p...BACKGROUND Cancer stem cells(CSCs) have been implicated in tumorigenesis and tumor recurrence and metastasis are key therapeutic targets in cancer treatment.MicroRNAs display therapeutic potential by controlling the properties of CSCs;however, whether an association exists between miR-3682-3p and CSCs is unknown.AIM To investigate the mechanism by which miR-3682-3p promotes stemness maintenance in hepatocellular carcinoma(HCC).METHODS MiR-3682-3p expression in HCC cell lines and 34 pairs of normal and HCC specimens was assayed by quantitative polymerase chain reaction. The functional role of miR-3682-3p was investigated in vitro and in vivo. Dual-luciferase reporter and chromatin immunoprecipitation assays were performed for target assessment, and western blotting was utilized to confirm miR-3682-3p/target relationships.RESULTS We found that miR-3682-3p plays a key role in HCC pathogenesis by promoting HCC cell stemness. The upregulation of miR-3682-3p enhanced CSC spheroid-forming ability, side population cell fractions, and the expression of CSC factors in HCC cells in vitro and the tumorigenicity of transplanted HCC cells in vivo. Furthermore, silencing miR-3682-3p prolonged the survival of HCC-bearing mice. Mechanistically, we found that miR-3682-3p targets FOXO3 and enables FOXO3/β-catenin interaction, which promotes c-Myc expression through PI3K/AKT;cMyc, in turn, activates miR-3682-3p, forming a positive feedback loop. Intriguingly, miR-3682-3p expression was induced by hepatitis B virus X protein(HBx) and was involved in HBx-induced tumor stemness-related pathogenesis.CONCLUSION Our findings reveal a novel mechanism by which miR-3682-3p promotes stemness in HCC stem cells. Silencing miR-3682-3p may represent a novel therapeutic strategy for HCC.展开更多
文摘Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.
基金Supported by the 12~(th) Special Fund for Young Scientists and Technicians in Guizhou Province,No.(2019) 5647the Science and Technology Fund of Guizhou Provincial Health and Health Commission,No.gzwjkj2020-1-101+1 种基金the National Natural Science Foundation Training Program of Guizhou Medical University,No.19NSP055Dongguan Science and Technology of Social Development Program,No.201950715024201
文摘BACKGROUND Cancer stem cells(CSCs) have been implicated in tumorigenesis and tumor recurrence and metastasis are key therapeutic targets in cancer treatment.MicroRNAs display therapeutic potential by controlling the properties of CSCs;however, whether an association exists between miR-3682-3p and CSCs is unknown.AIM To investigate the mechanism by which miR-3682-3p promotes stemness maintenance in hepatocellular carcinoma(HCC).METHODS MiR-3682-3p expression in HCC cell lines and 34 pairs of normal and HCC specimens was assayed by quantitative polymerase chain reaction. The functional role of miR-3682-3p was investigated in vitro and in vivo. Dual-luciferase reporter and chromatin immunoprecipitation assays were performed for target assessment, and western blotting was utilized to confirm miR-3682-3p/target relationships.RESULTS We found that miR-3682-3p plays a key role in HCC pathogenesis by promoting HCC cell stemness. The upregulation of miR-3682-3p enhanced CSC spheroid-forming ability, side population cell fractions, and the expression of CSC factors in HCC cells in vitro and the tumorigenicity of transplanted HCC cells in vivo. Furthermore, silencing miR-3682-3p prolonged the survival of HCC-bearing mice. Mechanistically, we found that miR-3682-3p targets FOXO3 and enables FOXO3/β-catenin interaction, which promotes c-Myc expression through PI3K/AKT;cMyc, in turn, activates miR-3682-3p, forming a positive feedback loop. Intriguingly, miR-3682-3p expression was induced by hepatitis B virus X protein(HBx) and was involved in HBx-induced tumor stemness-related pathogenesis.CONCLUSION Our findings reveal a novel mechanism by which miR-3682-3p promotes stemness in HCC stem cells. Silencing miR-3682-3p may represent a novel therapeutic strategy for HCC.