Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid a...Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid adsorbent to treat Cd^(2+)-containing wastewater,and its adsorption behavior on Cd^(2+)in aqueous solution was studied and analyzed.The microstructure and morphology of the molecular sieve were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM)and specific surface area analyzer.The results show that the synthesized 13-X molecular sieve has higher Brunauer–Emmett–Teller(BET)specific surface area with higher crystallinity and higher adsorption capacity for the heavy metal Cd^(2+).The adsorption process of Cd^(2+)by molecular sieve conforms to the Langmuir isotherm adsorption equation and Lagergren pseudo-second-order rate equation.Combined with thermodynamic calculation,it can be concluded that the adsorption process is physically monolayer,spontaneous and exothermic.In this study,a low-cost and naturally available synthesis method of 13-X molecular sieve is reported.Combined with its adsorption mechanism for Cd^(2+),it provides a feasible and general method for removing heavy metal ions from coal gangue and also provides a new way for the utilization of coal gangue with high added value.展开更多
基金This study was financially supported by the National Natural Science Foundation of China(No.52172099)the Basic Research Plan of Natural Science of Shaanxi Province(No.2020JQ-754)+3 种基金the Key Innovation Team of Shaanxi Province(No.2014KCT-04)the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology(Grant No.6310221009)the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology(Grant No.6310221009)the Special Project of Shaanxi Province(No.19JK0490)and the Study on Preparation and Properties of New Solid-Wastebased Cementitious Materials(No.6000190120).
文摘Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid adsorbent to treat Cd^(2+)-containing wastewater,and its adsorption behavior on Cd^(2+)in aqueous solution was studied and analyzed.The microstructure and morphology of the molecular sieve were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM)and specific surface area analyzer.The results show that the synthesized 13-X molecular sieve has higher Brunauer–Emmett–Teller(BET)specific surface area with higher crystallinity and higher adsorption capacity for the heavy metal Cd^(2+).The adsorption process of Cd^(2+)by molecular sieve conforms to the Langmuir isotherm adsorption equation and Lagergren pseudo-second-order rate equation.Combined with thermodynamic calculation,it can be concluded that the adsorption process is physically monolayer,spontaneous and exothermic.In this study,a low-cost and naturally available synthesis method of 13-X molecular sieve is reported.Combined with its adsorption mechanism for Cd^(2+),it provides a feasible and general method for removing heavy metal ions from coal gangue and also provides a new way for the utilization of coal gangue with high added value.