Hispidin is a pyranone compound found in edible and medicinal mushrooms of the Phellinus and Inonotus genera.This investigation used fluorescence spectroscopy,UV absorption spectroscopy,and molecular docking to examin...Hispidin is a pyranone compound found in edible and medicinal mushrooms of the Phellinus and Inonotus genera.This investigation used fluorescence spectroscopy,UV absorption spectroscopy,and molecular docking to examine the interaction of hispidin with pepsin.The Stern-Volmer method was used to perform the fluorescence quenching measurements at different temperatures(298 K,303 K,and 310 K).According to the findings,hispidin induced a static quenching mechanism in pepsin that resulted in the creation of a hispidin-pepsin complex with binding constants(Ka)ranging from 9.56×10^(4) to 3.45×10^(5) L mol^(-1).The positive values ofΔH(84.6 kJ mol-1)andΔS(337.9 J mol^(-1) K^(-1))demonstrated that hydrophobic forces contributed to forming the hispidin-pepsin complex.The findings of UV-vis absorption,synchronous fluorescence,and 3D fluorescence spectraspectra demonstrated that hispidin altered the conformation and microenvironment of pepsin.According to the analysis of molecular docking,hispidin got into the pepsin's active cavity.The research clarifies the molecular mechanisms by which hispidin binds to pepsin and helps understand its possible biological activity in vivo.展开更多
基金This work was financially assisted by the Natural Science Foundation of Guangdong Province(2021A1515010615,2022A1515012520)Special Fund for Science and Technology Innovation Strategy of Guangdong Province(2021S0052,2022DZXHT015,2023S003040,2023S002024,2022S035)Projects of Talents Recruitment of GDUPT(519030).
文摘Hispidin is a pyranone compound found in edible and medicinal mushrooms of the Phellinus and Inonotus genera.This investigation used fluorescence spectroscopy,UV absorption spectroscopy,and molecular docking to examine the interaction of hispidin with pepsin.The Stern-Volmer method was used to perform the fluorescence quenching measurements at different temperatures(298 K,303 K,and 310 K).According to the findings,hispidin induced a static quenching mechanism in pepsin that resulted in the creation of a hispidin-pepsin complex with binding constants(Ka)ranging from 9.56×10^(4) to 3.45×10^(5) L mol^(-1).The positive values ofΔH(84.6 kJ mol-1)andΔS(337.9 J mol^(-1) K^(-1))demonstrated that hydrophobic forces contributed to forming the hispidin-pepsin complex.The findings of UV-vis absorption,synchronous fluorescence,and 3D fluorescence spectraspectra demonstrated that hispidin altered the conformation and microenvironment of pepsin.According to the analysis of molecular docking,hispidin got into the pepsin's active cavity.The research clarifies the molecular mechanisms by which hispidin binds to pepsin and helps understand its possible biological activity in vivo.