Injecting CO2into hydrocarbon reservoirs can enhance the recovery of hydrocarbon resources,and simultaneously,CO2can be stored in the rese rvoirs,reducing considerable amount of carbon emissions in the atmosphere.Howe...Injecting CO2into hydrocarbon reservoirs can enhance the recovery of hydrocarbon resources,and simultaneously,CO2can be stored in the rese rvoirs,reducing considerable amount of carbon emissions in the atmosphere.However,injected CO_(2)tends to go through fractures,high-permeability channels and streaks present in reservoirs,resulting in inefficient hydrocarbon recovery coupled with low CO_(2)storage performance.Conformance treatments with CO_(2)-resistant crosslinked polymer gels were performed in this study to mitigate the CO_(2)channeling issue and promote the synergy between enhanced oil recovery(EOR) and subsurface sequestration of CO_(2).Based on a typical low-permeability CO_(2)-flooding reservoir in China,studies were performed to investigate the EOR and CO_(2)storage performance with and without conformance treatment.The effect of permeability contrast between the channels and rese rvoir matrices,treatment size,and plugging strength on the efficiency of oil recovery and CO_(2)storage was systematically investigated.The results indicated that after conformance treatments,the CO_(2)channeling problem was mitigated during CO_(2)flooding and storage.The injected CO_(2)was more effectively utilized to recover the hydrocarbons,and entered wider spectrum of pore spaces.Consequently,more CO_(2)was trapped underground.Pronounced factors on the synergy of EOR and CO_(2)storage were figured out.Compared with the treatment size,the CO_(2)storage efficiency was more sensitive to the plugging strength of the conformance treatment materials.This observation was important for conformance treatment design in CCUS-EOR projects.According to this study,the materials should reduce the channel permeability to make the channel/matrix permeability ratio below 30.The results demonstrate the importance of conformance treatment in maximizing the performance of CCUS-EOR process to achieve both oil recovery improvement and efficient carbon storage.This study provides guidelines for successful field applications of CO_(2)transport control in CO_(2)geo-utilization and storage.展开更多
Polymer gel systems have been widely applied to control excessive water and improve oil recovery(IOR)in petroleum reservoirs.They are usually divided into two main types,in-situ cross-linked polymer gels,and pre-forme...Polymer gel systems have been widely applied to control excessive water and improve oil recovery(IOR)in petroleum reservoirs.They are usually divided into two main types,in-situ cross-linked polymer gels,and pre-formed polymer gels.In recent years,nuclear magnetic resonance(NMR) technology has been gradually applied to the research of polymer gel systems due to its unique analysis advantages.This paper is intent to review these works systematically.For in-situ cross-linked polymer gel systems,NMR can be used to characterize the chemical structure changes of the polymer,the cross-linker,and the auxiliary agent in the formulation of the polymer gel systems.Moreover,the gelation time and the gel strength of the in-situ cross-linked polymer gel systems can also be measured by NMR.For pre-formed polymer gels,NMR can be employed to detect the chemical structure of the designed products.Last,the NMR method can evaluate the plugging,water control,and oil improvement performance of the polymer gels in porous media without using dopants.This review can help readers build a more systematic understanding of the application of NMR technology in polymer gel systems for IOR and help re searchers to more deeply study the performance of polymer gel systems.展开更多
基金supported by Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC001,2462021YJRC012)the funding from State Key Laboratory of Petroleum Resources and Prospecting(No.PRP/indep-1-2103)
文摘Injecting CO2into hydrocarbon reservoirs can enhance the recovery of hydrocarbon resources,and simultaneously,CO2can be stored in the rese rvoirs,reducing considerable amount of carbon emissions in the atmosphere.However,injected CO_(2)tends to go through fractures,high-permeability channels and streaks present in reservoirs,resulting in inefficient hydrocarbon recovery coupled with low CO_(2)storage performance.Conformance treatments with CO_(2)-resistant crosslinked polymer gels were performed in this study to mitigate the CO_(2)channeling issue and promote the synergy between enhanced oil recovery(EOR) and subsurface sequestration of CO_(2).Based on a typical low-permeability CO_(2)-flooding reservoir in China,studies were performed to investigate the EOR and CO_(2)storage performance with and without conformance treatment.The effect of permeability contrast between the channels and rese rvoir matrices,treatment size,and plugging strength on the efficiency of oil recovery and CO_(2)storage was systematically investigated.The results indicated that after conformance treatments,the CO_(2)channeling problem was mitigated during CO_(2)flooding and storage.The injected CO_(2)was more effectively utilized to recover the hydrocarbons,and entered wider spectrum of pore spaces.Consequently,more CO_(2)was trapped underground.Pronounced factors on the synergy of EOR and CO_(2)storage were figured out.Compared with the treatment size,the CO_(2)storage efficiency was more sensitive to the plugging strength of the conformance treatment materials.This observation was important for conformance treatment design in CCUS-EOR projects.According to this study,the materials should reduce the channel permeability to make the channel/matrix permeability ratio below 30.The results demonstrate the importance of conformance treatment in maximizing the performance of CCUS-EOR process to achieve both oil recovery improvement and efficient carbon storage.This study provides guidelines for successful field applications of CO_(2)transport control in CO_(2)geo-utilization and storage.
基金supported by the Research Foundation of China University of Petroleum-Beijing at Karamay (No. XQZX20200010)the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2019D01B57)+3 种基金the Tianshan Talent Project (No. 2019Q025)the Sichuan Province Regional Innovation Cooperation Project (No. 2020YFQ0036)the Science and Technology Department of Shaanxi Province (No. 2021JQ-836)the CNPC Strategic Cooperation Science and Technology Project (ZLZX2020-01-04-04)。
文摘Polymer gel systems have been widely applied to control excessive water and improve oil recovery(IOR)in petroleum reservoirs.They are usually divided into two main types,in-situ cross-linked polymer gels,and pre-formed polymer gels.In recent years,nuclear magnetic resonance(NMR) technology has been gradually applied to the research of polymer gel systems due to its unique analysis advantages.This paper is intent to review these works systematically.For in-situ cross-linked polymer gel systems,NMR can be used to characterize the chemical structure changes of the polymer,the cross-linker,and the auxiliary agent in the formulation of the polymer gel systems.Moreover,the gelation time and the gel strength of the in-situ cross-linked polymer gel systems can also be measured by NMR.For pre-formed polymer gels,NMR can be employed to detect the chemical structure of the designed products.Last,the NMR method can evaluate the plugging,water control,and oil improvement performance of the polymer gels in porous media without using dopants.This review can help readers build a more systematic understanding of the application of NMR technology in polymer gel systems for IOR and help re searchers to more deeply study the performance of polymer gel systems.