期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microscale crack propagation in shale samples using focused ion beam scanning electron microscopy and three-dimensional numerical modeling 被引量:1
1
作者 Xin Liu si-wei meng +3 位作者 Zheng-Zhao Liang Chun'an Tang Jia-Ping Tao Ji-Zhou Tang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1488-1512,共25页
Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas re... Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas reserves.Randomly distributed minerals and heterogeneities in shales significantly affect mechanical properties and fracturing behaviors in oil and gas exploitation.Describing the actual microstructure and associated heterogeneities in shales constitutes a significant challenge.The RFPA3D(rock failure process analysis parallel computing program)-based modeling approach is a promising numerical technique due to its unique capability to simulate the fracturing behavior of rocks.To improve traditional numerical technology and study crack propagation in shale on the microscopic scale,a combination of high-precision internal structure detection technology with the RFPA^(3D) numerical simulation method was developed to construct a real mineral structure-based modeling method.First,an improved digital image processing technique was developed to incorporate actual shale microstructures(focused ion beam scanning electron microscopy was used to capture shale microstructure images that reflect the distri-butions of different minerals)into the numerical model.Second,the effect of mineral inhomogeneity was considered by integrating the mineral statistical model obtained from the mineral nanoindentation experiments into the numerical model.By simulating a shale numerical model in which pyrite particles are wrapped by organic matter,the effects of shale microstructure and applied stress state on microcrack behavior and mechanical properties were investigated and analyzed.In this study,the effect of pyrite particles on fracture propagation was systematically analyzed and summarized for the first time.The results indicate that the distribution of minerals and initial defects dominated the fracture evolution and the failure mode.Cracks are generally initiated and propagated along the boundaries of hard mineral particles such as pyrite or in soft minerals such as organic matter.Locations with collections of hard minerals are more likely to produce complex fractures.This study provides a valuable method for un-derstanding the microfracture behavior of shales. 展开更多
关键词 FIB-SEM Digital imageprocessing Realistic microstructure 3D digital shale fracture process simulation PYRITE
下载PDF
Mechanical characteristics and reservoir stimulation mechanisms of the Gulong shale oil reservoirs, the northern Songliao Basin
2
作者 si-wei meng Jia-Ping Tao +6 位作者 Tian-Jiao Li Dong-Xu Li Su-Ling Wang Liu Yang Xin Liu Li-Hao Liang He Liu 《Petroleum Science》 SCIE EI CAS 2024年第3期2023-2036,共14页
Shale oil of the Qingshankou Formation of the Gulong Sag,the northern Songliao Basin,represents the first attempt at large-scale development of pure-shale-type shale oil in China.By integrating the multiscale refined ... Shale oil of the Qingshankou Formation of the Gulong Sag,the northern Songliao Basin,represents the first attempt at large-scale development of pure-shale-type shale oil in China.By integrating the multiscale refined reservoir characterization with macro-micro-scale mechanical testing,it is clarified that the Gulong shale is characterized by high clay mineral content,high rock plasticity,highly-developed bedding,and prominent mechanical anisotropy.A three-dimensional(3D)fracture propagation model of hydraulic fracturing was built for the Gulong shale,which fully captures the hydraulic fracture distribution pattern affected by the high bedding density,in-situ stress,and fracturing treatment parameters.Our research showed that due to influences of bedding,hydraulic fracturing in the Gulong shale forms a complex fracture morphology featuring the main fracture with multiple perpendicular branches that have different lengths(like the outdoor directional TV antenna);however,the vertical propagation of fractures is inhibited,and the fracture height is commonly less than 10 m.The limited stimulated reservoir volume(SRV)is the main problem facing the fracturing stimulation of the Gulong shale oil.Bedding density has vital effects on fracture morphology,so case-specific fracturing designs shall be developed for shale intervals with different bedding development degrees.For reservoirs with welldeveloped bedding,it is suggested to properly increase the perforation cluster spacing and raise the volume and proportions of viscous fluids of the pad,so as to effectively promote vertical fracture propagation and improve reservoir stimulation performance.This study integrates multi-scale fine reservoir characterization and macro-micro-scale mechanical testing,as well as the construction and numerical simulation of hydraulic fracturing models for high-density layered shale reservoirs,providing a new approach and methodological framework for the fracturing research of high-density layered shale reservoirs. 展开更多
关键词 Shale oil Hydraulic fracturing High bedding density Fracture propagation model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部