A new low temperature Pmmm(120 K) phase was found in high temperature superconductor Sr_2 CuO_(3+δ), which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorp...A new low temperature Pmmm(120 K) phase was found in high temperature superconductor Sr_2 CuO_(3+δ), which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorption fine structure(EXAFS) and x-ray absorption near edge structure(XANES) at Cu K-edge, the strong charge density redistribution and local lattice fluctuations around Cu site at the onset of phase transition were due to the occurrence of superconductive coherence, the redistribution and fluctuation finished at Tc. Finally, the electron–lattice interaction was mainly elaborated to understand the superconductivity of Sr_2 CuO_(3+δ).展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB922004/3,2010CB934501,and 2009CB929502)the Funds of Jilin Province,China(Grant No.JJKH20180860KJ)+1 种基金the National Natural Science Foundation of Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.WK2310000043)
文摘A new low temperature Pmmm(120 K) phase was found in high temperature superconductor Sr_2 CuO_(3+δ), which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorption fine structure(EXAFS) and x-ray absorption near edge structure(XANES) at Cu K-edge, the strong charge density redistribution and local lattice fluctuations around Cu site at the onset of phase transition were due to the occurrence of superconductive coherence, the redistribution and fluctuation finished at Tc. Finally, the electron–lattice interaction was mainly elaborated to understand the superconductivity of Sr_2 CuO_(3+δ).