High-entropy carbide ceramics (HECs) have drawn increasing attention as their excellent mechanical and thermal properties. In this work, the crystal stability,mechanical behavior, electronic and thermodynamic properti...High-entropy carbide ceramics (HECs) have drawn increasing attention as their excellent mechanical and thermal properties. In this work, the crystal stability,mechanical behavior, electronic and thermodynamic properties of (TiZrNbTa)C HEC are investigated by the first-principles calculations. Obtained results reveal that the disordered transition-metal (TM) atoms result in serious local lattice distortion within the crystal. The lattice distortion plays a key role for the structural stabilization,mechanical anisotropy and thermodynamic behaviors of(TiZrNbTa)C. Increasing pressure leads to decrease the lattice parameter, volume and brittleness, meanwhile increase the elastic constants, elastic moduli, mechanical anisotropy, sound velocity, and Debye temperature. It is also discovered that charge delocalization occurs with the increase in pressure. The mechanical stability and anisotropy of (TiZrNbTa)C are attributed primarily to TM-C bonding.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51801179)Yunnan Science and Technology Projects (Nos. 2018ZE001, 2019ZE001-1, 202002AB080001-6, 2018IC058, 2018FB083 and 2018FD011)the support from the Yunnan Provincial High-level Talents Introduction Projects。
文摘High-entropy carbide ceramics (HECs) have drawn increasing attention as their excellent mechanical and thermal properties. In this work, the crystal stability,mechanical behavior, electronic and thermodynamic properties of (TiZrNbTa)C HEC are investigated by the first-principles calculations. Obtained results reveal that the disordered transition-metal (TM) atoms result in serious local lattice distortion within the crystal. The lattice distortion plays a key role for the structural stabilization,mechanical anisotropy and thermodynamic behaviors of(TiZrNbTa)C. Increasing pressure leads to decrease the lattice parameter, volume and brittleness, meanwhile increase the elastic constants, elastic moduli, mechanical anisotropy, sound velocity, and Debye temperature. It is also discovered that charge delocalization occurs with the increase in pressure. The mechanical stability and anisotropy of (TiZrNbTa)C are attributed primarily to TM-C bonding.