期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
富氮碳鞘内阶梯层状Mo_(2)C异质结用于高效CO_(2)化学固定
1
作者 许玉帅 汪红辉 +6 位作者 李奇远 张仕楠 夏思源 许冬 类伟巍 陈接胜 李新昊 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第3期138-145,共8页
在多相催化体系中,开发具有高催化活性的多相催化剂是实现小分子绿色转化的核心.过渡金属碳化物,特别是碳化钼(Mo_(2)C),因其活性与贵金属相当且成本低廉,在小分子转化方面具有应用潜力.二维(2D)过渡金属碳化物因其平面结构两侧具有可... 在多相催化体系中,开发具有高催化活性的多相催化剂是实现小分子绿色转化的核心.过渡金属碳化物,特别是碳化钼(Mo_(2)C),因其活性与贵金属相当且成本低廉,在小分子转化方面具有应用潜力.二维(2D)过渡金属碳化物因其平面结构两侧具有可暴露的活性位点,在小分子转化和能量储存方面受到越来越多的关注.然而,在催化剂或电极材料的批量制备过程中,二维层的堆积会导致表面活性位点损失,严重影响其性能.此外,层状材料的堆积还可能阻碍有机分子的有效传递,形成传质屏障,进一步影响催化过程.特别是,二维过渡金属碳化物表面的氧化会导致活性位点的大量损失,这已成为当前亟待解决的关键问题.因此,开发一种能确保层状Mo_(2)C材料的机械和化学稳定性的有效合成方法,对于推动其实际应用至关重要.本文利用可控氧扩散蚀刻法合成了一种富氮碳鞘包覆的“阶梯状”2D-Mo_(2)C异质结材料(2D-Mo_(2)C@NC).该材料因具有独特的阶梯层状结构和整流界面,可以显著促进CO_(2)与邻苯二胺的羰基化反应,并对CO_(2)与多种二胺衍生物的羰基化反应均表现出较好的催化活性.通过密度泛函理论计算和紫外光电子能谱分析发现,Mo_(2)C与NC壳层的接触界面形成了整流接触,导致电子从NC壳层流向Mo_(2)C,进而形成富电子的层状Mo_(2)C.随着NC壳层氮含量的增加,Mo_(2)C的电子富集程度逐渐增加.进一步的理论计算和CO_(2)程序升温脱附实验表明,CO_(2)吸附依赖于2D-Mo_(2)C的电子富集程度,并随2D-Mo_(2)C的电子富集程度增加而增强.这种电子富集特性使得2D-Mo_(2)C表面能够活化CO_(2)分子,形成高度扭曲的预吸附结构(键角为118.8°),有利于后续与二胺的羰基化反应.邻苯二胺与CO_(2)羰基化反应的吉布斯自由能计算结果表明,电子的富集程度对反应决速步的能垒影响较小.因此,推测CO_(2)分子在富电子Mo_(2)C表面的预吸附增强是促进CO_(2)羰基化反应的直接因素.实验结果也表明,2D-Mo_(2)C@NC催化剂催化邻苯二胺与CO_(2)羰基化反应的催化活性随2D-Mo_(2)C的电子密度增强而提高.优化后的阶梯状异质结2D-Mo_(2)C@NC样品的CO_(2)吸附量高于核壳状异质结Mo_(2)C@NC样品,且催化性能和CO_(2)吸附量存在明显的正相关关系,证实了阶梯状异质结结构所暴露出的更多富电子Mo_(2)C活性位点可以促进CO_(2)的预吸附及随后的活化过程.此外,X射线光电子能谱结果表明,富电子的2D-Mo_(2)C表现出优于Mo_(2)C的化学稳定性,不易被氧化.在优化条件下制得的2D-Mo_(2)C@NC催化剂表现出了最佳催化性能,在较低的反应温度下,其催化邻苯二胺与CO_(2)羰基化反应生成2-苯并咪唑啉酮的TOF值为6.1‒10.2 h^(‒1),比文献报道的最佳结果高4.2倍.综上,本文成功地开发了一种有效的可控氧扩散蚀刻策略,合成出具有高机械和化学稳定性的“阶梯状”2D-Mo_(2)C异质结材料,并用于高效催化CO_(2)和邻苯二胺羰基化生成2-苯并咪唑啉酮.该可控氧扩散蚀刻方法可以扩展到其他二维碳化物的制备,并进一步扩展其在光催化和电催化系统中的应用,为二维异质结材料的合成和应用提供了参考和新思路. 展开更多
关键词 电子富集2D-Mo_(2)C CO_(2)固定 肖特基异质结 羰基化 非均相催化
下载PDF
Hydrogen-rich surface of MoC catalysts for efficient CO_(2) hydrogenation induced by a coupled hydrogen donator
2
作者 Dong Xu si-yuan xia +2 位作者 Qi-Yuan Li Jie-Sheng Chen Xin-Hao Li 《Nano Research》 SCIE EI CSCD 2024年第8期7762-7767,共6页
Direct CO_(2) hydrogenation offers an important strategy for promoting the global carbon balance,but high thermodynamic and kinetic stability of CO_(2) has restricted its applicability to only a handful of industrial ... Direct CO_(2) hydrogenation offers an important strategy for promoting the global carbon balance,but high thermodynamic and kinetic stability of CO_(2) has restricted its applicability to only a handful of industrial sectors.Here,we introduce a proof-of-concept application of the electron-rich Pt surface to promote hydrogen donation for electron-rich MoC particles acting as hydrogen acceptors,thereby constructing hydrogen-rich surface of MoC active centers.Moreover,the formed hydrogen-rich and electronrich surface could greatly decrease reaction activation energy to boost the efficient CO_(2) hydrogenation into formic acid over the MoC centers.The optimized MoC@NC/Pt-0.1(NC:nitrogen-doped carbon)catalyst exhibits a high turnover frequency(TOF)value of 1.2 h^(−1) at a lower temperature of 60℃and a TOF of 24.2 h^(−1) under standard reaction conditions widely used in the literature,exceeding 7 times of MoC@NC catalyst and surpassing the benchmark classical non-noble metal active center-based heterogeneous catalyst. 展开更多
关键词 electron-rich Pt nanoparticles hydrogen donation hydrogen-rich MoC nanoparticles CO_(2) hydrogenation formic acid
原文传递
Tunable hydrogen coverage on electron-deficient platinum nanoparticles for efficient hydrogenation reactions 被引量:2
3
作者 Lu-Han Sun Qi-Yuan Li +7 位作者 Yu-Shuai Xu si-yuan xia Dong Xu Xiu Lin Jingsan Xu Jie-Sheng Chen Guo-Dong Li Xin-Hao Li 《Nano Research》 SCIE EI CSCD 2023年第7期8751-8756,共6页
Dissociation of active H species over the catalytic sites with the carbon-supported Pt metals as the mainstream catalysts is crucial to facilitate hydrogen donation and accelerate the hydrogen addition process in cata... Dissociation of active H species over the catalytic sites with the carbon-supported Pt metals as the mainstream catalysts is crucial to facilitate hydrogen donation and accelerate the hydrogen addition process in catalytic hydrogenation systems to produce polymers,pharmaceuticals,agrochemicals,fragrances,and biofuels at million-ton scale.Much attention has been paid to the design of the more active catalytic site to effectively adsorb and activate reactants and H_(2) molecules.At the same time,there is still a huge room to develop powerful strategies to accelerate the donation of acted H species to the reactants from the Pt surface further to boost the final catalytic efficiencies of Pt catalysts and depress the total Pt consumption.Herein,we present a new strategy for promoting the Pt-H bond dissociation by increasing surface hydrogen coverage on designed electron-deficient Pt nanoparticles.The electron deficiency of Pt nanoparticles has been successfully tuned by constructing a rectifying contact with an even“noble”boron-rich carbon support(Pt/BC).Theoretical and experimental results confirm the dominant role of the pronounced electron deficiencies of Pt nanoparticles in enhancing the H coverage for 2.3 times higher than that of neutral Pt nanoparticles,significantly boosting the Pt-H bond dissociation and thus the whole hydrogenation process as reflected by the extremely high turnover frequency(TOF)value of 388 h^(-1)at 30℃ and 10 bar H_(2) for phenol hydrogenation on the Pt/BC,outperforming the bench-marked catalysts by a factor of 9. 展开更多
关键词 HYDROGENATION hydrogen coverage Schottky barrier heterogeneous catalysis
原文传递
Accelerating the Activation of NO_(x)^(−)on Ru Nanoparticles for Ammonia Production by Tuning Their Electron Deficiency
4
作者 Guang-Yao Zhai Qi-Yuan Li +10 位作者 Shi-Nan Zhang Dong Xu si-yuan xia Peng Gao Xiu Lin Yun-xiao Lin Jin-Huan Cheng Wei-Yao Hu Lu-Han Sun Xin-Hao Li Jie-Sheng Chen 《CCS Chemistry》 CAS 2022年第11期3455-3462,共8页
Stable and portable ammonia(NH3)is a promising,low-cost,and environment-friendly medium for energy storage.How to achieve the rapid production of NH3 from reducing NO_(x)^(−)in aqueous systems and industrial wastewate... Stable and portable ammonia(NH3)is a promising,low-cost,and environment-friendly medium for energy storage.How to achieve the rapid production of NH3 from reducing NO_(x)^(−)in aqueous systems and industrial wastewater via electrochemical methods remains the main challenge for practical application on a large scale.The corresponding electrocatalysts as the key materials in electrochemical devices suffer from low activity,especially in neutral systems.In this work,we successfully elevated the activity of the bench-mark Ru electrocatalysts to more than 30 times via construction of rectifying contact of Ru metals and noble carbons.We theoretically predicted and then rationally designed a new type of P-O rich carbon with large work functions as“noble”supports to attract a pronounced number of electrons from Ru metals at the rectifying interface.The resulting electron deficiency of Ru metals largely promotes the pre-adsorption and activation of NO_(x)^(−)anions,providing high Faradaic efficiencies(>96%)and record-high turnover frequency values for universal NO_(2)^(−)and NO_(3)^(−)reduction in neutral solution. 展开更多
关键词 electrochemical NOx−reduction ammonia production energy storage P-O rich carbon electron deficiency of Ru nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部