期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of Vanadium on Fracture Splitting Property of Medium Carbon Steel 被引量:2
1
作者 Wei-jun HUI cheng-wei SHAO +2 位作者 Yong-jian ZHANG si-lian chen Han DONG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第5期475-483,共9页
The fracture splitting property of medium carbon steel 37MnSiS microalloyed with V up to 0. 45% was investigated by using simulated fracture splitting test,for the development of new crackable medium carbon steel to m... The fracture splitting property of medium carbon steel 37MnSiS microalloyed with V up to 0. 45% was investigated by using simulated fracture splitting test,for the development of new crackable medium carbon steel to manufacture high performance connecting rod. Conventional high carbon steel C70S6 was used for comparison. The results show that the volume fraction of both ferrite and V-rich M( C,N) particles increases,and the pearlite interlamellar spacing decreases with increasing V content,which in turn results in gradual increase of strength and decrease of ductility and impact energy. The fracture splitting property of the tested steel could be improved significantly due to the increase of V content mainly through the precipitation hardening mechanism of fine M( C,N) precipitates. The fraction of brittle cleavage fracture in the crack initiation area increases noticeably with increasing V content and full brittle cleavage fracture surface could be obtained when V content was increased to 0. 45%. It is concluded that medium carbon steel with V content higher than about 0. 28% possesses not only comparable or even higher mechanical properties with those of conventional steel C70S6,but also excellent fracture splitting property,and therefore,is more suitable to fabricate high performance fracture splitting connecting rod. 展开更多
关键词 microalloyed medium carbon steel fracture splitting vanadium precipitation hardening microstructure
原文传递
Hot Deformation Behavior of Vanadium-microalloyed Medium-carbon Steel for Fracture Splitting Connecting Rod
2
作者 Wei-jun HUI si-lian chen +2 位作者 cheng-wei SHAO Yong-jian ZHANG Han DONG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第7期615-621,共7页
Single compression tests were carried out with a Gleeble-3800 thermal simulator to investigate hot deform- ation behavior of two vanadium-microalloyed medium-carbon steels for fracture splitting connecting rod. The te... Single compression tests were carried out with a Gleeble-3800 thermal simulator to investigate hot deform- ation behavior of two vanadium-microalloyed medium-carbon steels for fracture splitting connecting rod. The tests were performed to a total true strain of 0.92 at true strain rates ranging from 10-2 to 10 s-1 and deformation temper- ature of 900--1 150 ℃, The results show that hot deformation behavior of the tested steels is similar to that of con- ventional medium-carbon microalloyed steels and dynamic recrystallization is easier to occur at higher deformation temperature and lower strain rate. The austenite deformation resistance and activation energy of deformation increase with increasing vanadium content from 0.15% to 0. 28% and thus the starting time of dynamic recrystallization was delayed. Finer recrystallized austenite grain could he obtained at higher strain rate, lower deformation temperature and higher vanadium content. TEM observation of the specimens quenched just before and after deformation reveals that vanadium is mainly in dissolved solute condition in austenite and thus affects the dynamic recrystallization behavior of the tested steels mainly through solute-drag effect. 展开更多
关键词 VANADIUM microalloyed medium-carbon steel hot deformation dynamic recrystallization fracture splitting connected rod
原文传递
High Ductility and Toughness of a Micro-duplex Medium-Mn Steel in a Large Temperature Range from—196 ℃ to 200 ℃
3
作者 si-lian chen Jun HU +2 位作者 Xiao-dan ZHANG Han DONG Wen-quan CAO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第12期1126-1130,共5页
A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 ℃ and 650 ℃ ). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite lath... A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 ℃ and 650 ℃ ). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite laths was de- veloped by austenite reverse transformation (ART) during intercritical annealing after forging and hot rolling. Ultra- high ductility with a total elongation higher than 30% was achieved in the temperature range from -196 ℃ to 200 ℃, and high impact toughness no less than 200 J at -40 ℃ was obtained. Based on the analysis of microstructure and mechanical properties, it was found that the enhanced ductility was determined by the phase transformation effect of austenite (TRIP effect), while the delayed ductile to brittle transition was controlled by austenite stability. 展开更多
关键词 high strength high ductility intercritical annealing medium-Mn steel ultrafine grain size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部