Four types of coals, KL, XB, ZS and GD with different coal ranks, were dissolved with the organic solvent N-methyl-2- pyrrolidone at 350 ℃ and around 3.0 MPa pressure to obtain thermal soluble constituents (TSCs). ...Four types of coals, KL, XB, ZS and GD with different coal ranks, were dissolved with the organic solvent N-methyl-2- pyrrolidone at 350 ℃ and around 3.0 MPa pressure to obtain thermal soluble constituents (TSCs). The yield, component and maceral group were investigated as well as their coking properties, including caking index and thermoplasticity. The results indicated that the yields of the four coals were of the following order: KL 〉 XB 〉 ZS 〉 GD. Based on the yield and the vitrinite content, coals were ranked from high to low. The ash contents of TSCs were significantly less than that of raw coals, and the TSCs contain more light components, leading to an increase in volatile matter. The patterns of Fourier transform infrared spectroscopy indicated that carbonyl was enriched in TSCs. Regarding the maceral group, TSCs were mainly composed of vitrinite which is the main reactive material and converts into binder phase in cokemaking process. Higher caking index values and fluidity were obtained in TSCs compared with the raw coals. The coking experiments with different amounts of TSCs addition were carried out. The results demonstrated that the proper TSCs addition could enhance the coke strength due to its high caking index and good fluidity.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 51574023) and National Key Research and Development Program of China (2016YFB0600701).
文摘Four types of coals, KL, XB, ZS and GD with different coal ranks, were dissolved with the organic solvent N-methyl-2- pyrrolidone at 350 ℃ and around 3.0 MPa pressure to obtain thermal soluble constituents (TSCs). The yield, component and maceral group were investigated as well as their coking properties, including caking index and thermoplasticity. The results indicated that the yields of the four coals were of the following order: KL 〉 XB 〉 ZS 〉 GD. Based on the yield and the vitrinite content, coals were ranked from high to low. The ash contents of TSCs were significantly less than that of raw coals, and the TSCs contain more light components, leading to an increase in volatile matter. The patterns of Fourier transform infrared spectroscopy indicated that carbonyl was enriched in TSCs. Regarding the maceral group, TSCs were mainly composed of vitrinite which is the main reactive material and converts into binder phase in cokemaking process. Higher caking index values and fluidity were obtained in TSCs compared with the raw coals. The coking experiments with different amounts of TSCs addition were carried out. The results demonstrated that the proper TSCs addition could enhance the coke strength due to its high caking index and good fluidity.