The concentration of total nitrogen(TN) is reported to vary between 20 and 35 mg/L in domestic wastewater. In raw wastewater, ammonia nitrogen eNHt4-NT is the main nitrogen form, accounting for 70%e82% of the TN conce...The concentration of total nitrogen(TN) is reported to vary between 20 and 35 mg/L in domestic wastewater. In raw wastewater, ammonia nitrogen eNHt4-NT is the main nitrogen form, accounting for 70%e82% of the TN concentration. Organic nitrogen, nitrite nitrogen eNOà2-NT,and nitrate nitrogen eNOà3-NT are present as well. For years, due to the lack of regulatory limits on nitrogen concentration in surface waters,nitrogen from secondary effluent has posed a significant threat to the health of aquatic ecosystems. Researchers have made substantial efforts to reduce the nitrogen concentration in secondary effluent. As a kind of advanced wastewater treatment technology, the subsurface infiltration(SI)system has been widely used, owing to its advantages, which include low operation cost, easy maintenance, and low energy consumption. This review discusses the fate of various forms of nitrogen in SI treatment, including organic nitrogen, NHt4-N, NOà2-N, and NOà3-N. Major biological processes involved in nitrogen removal and the main factors influencing its transformation are suggested. Finally, it is shown that ammonification followed by nitrification-denitrification plays a major role in nitrogen removal. Further research needs to focus on the emission characteristics of gaseous nitrogen(generated from the nitrification, denitrification, and completely autotrophic nitrogen-removal over nitrite(CANON) processes) with respect to their greenhouse effects.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.41571455 and 51578115)the Basic Science Research Fund of Northeastern University(Grant No.N160104004)
文摘The concentration of total nitrogen(TN) is reported to vary between 20 and 35 mg/L in domestic wastewater. In raw wastewater, ammonia nitrogen eNHt4-NT is the main nitrogen form, accounting for 70%e82% of the TN concentration. Organic nitrogen, nitrite nitrogen eNOà2-NT,and nitrate nitrogen eNOà3-NT are present as well. For years, due to the lack of regulatory limits on nitrogen concentration in surface waters,nitrogen from secondary effluent has posed a significant threat to the health of aquatic ecosystems. Researchers have made substantial efforts to reduce the nitrogen concentration in secondary effluent. As a kind of advanced wastewater treatment technology, the subsurface infiltration(SI)system has been widely used, owing to its advantages, which include low operation cost, easy maintenance, and low energy consumption. This review discusses the fate of various forms of nitrogen in SI treatment, including organic nitrogen, NHt4-N, NOà2-N, and NOà3-N. Major biological processes involved in nitrogen removal and the main factors influencing its transformation are suggested. Finally, it is shown that ammonification followed by nitrification-denitrification plays a major role in nitrogen removal. Further research needs to focus on the emission characteristics of gaseous nitrogen(generated from the nitrification, denitrification, and completely autotrophic nitrogen-removal over nitrite(CANON) processes) with respect to their greenhouse effects.