期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
微针技术应用研究现状 被引量:2
1
作者 赵思博 鲍怡如 谢敏 《过程工程学报》 CAS CSCD 北大核心 2023年第2期163-172,共10页
微针是通过微制造加工获得的一种针状体,单个针体尺寸为微米级,多个针体组成微针阵列,能够穿透皮肤角质层直达真皮层,在研发初期主要用于药物递送。与口服给药相比,微针能避开消化系统对药物的代谢作用;与注射针头相比,微针能够有效减... 微针是通过微制造加工获得的一种针状体,单个针体尺寸为微米级,多个针体组成微针阵列,能够穿透皮肤角质层直达真皮层,在研发初期主要用于药物递送。与口服给药相比,微针能避开消化系统对药物的代谢作用;与注射针头相比,微针能够有效减小患者疼痛感,提高患者依从性。此外,微针技术因为其便捷的透皮作用方式,在疫苗接种、组织液提取、生物标志物检测、医疗美容等领域的应用也被广泛开发。微针的制作材料有硅、不锈钢及生物降解材料,如透明质酸、聚乳酸等;从给药方式上可分为固体、包被、溶解、空心以及水凝胶等多种微针类型。本综述结合近年来微针技术相关进展,简要概述微针的制造材料及作用形式,重点介绍微针在药物递送、疫苗接种及组织液提取和生物标志物检测等领域的应用,探讨微针的机械强度、生物安全性、无菌化处理及稳定性等对其在市场上推广应用的影响,并对其未来发展进行了展望。 展开更多
关键词 微针 透皮技术 工作原理 医学应用 未来发展
原文传递
Heterogeneous relational message passing networks for molecular dynamics simulations 被引量:2
2
作者 Zun Wang Chong Wang +5 位作者 sibo zhao Yong Xu Shaogang Hao Chang Yu Hsieh Bing-Lin Gu Wenhui Duan 《npj Computational Materials》 SCIE EI CSCD 2022年第1期509-517,共9页
With many frameworks based on message passing neural networks proposed to predict molecular and bulk properties,machine learning methods have tremendously shifted the paradigms of computational sciences underpinning p... With many frameworks based on message passing neural networks proposed to predict molecular and bulk properties,machine learning methods have tremendously shifted the paradigms of computational sciences underpinning physics,material science,chemistry,and biology.While existing machine learning models have yielded superior performances in many occasions,most of them model and process molecular systems in terms of homogeneous graph,which severely limits the expressive power for representing diverse interactions.In practice,graph data with multiple node and edge types is ubiquitous and more appropriate for molecular systems.Thus,we propose the heterogeneous relational message passing network(HermNet),an end-to-end heterogeneous graph neural networks,to efficiently express multiple interactions in a single model with ab initio accuracy.HermNet performs impressively against many top-performing models on both molecular and extended systems.Specifically,HermNet outperforms other tested models in nearly 75%,83%and 69%of tasks on revised Molecular Dynamics 17(rMD17),Quantum Machines 9(QM9)and extended systems datasets,respectively.In addition,molecular dynamics simulations and material property calculations are performed with HermNet to demonstrate its performance.Finally,we elucidate how the design of HermNet is compatible with quantum mechanics from the perspective of the density functional theory.Besides,HermNet is a universal framework,whose sub-networks could be replaced by other advanced models. 展开更多
关键词 THEORY PASSING DYNAMICS
原文传递
Symmetry-adapted graph neural networks for constructing molecular dynamics force fields
3
作者 Zun Wang Chong Wang +4 位作者 sibo zhao ShiQiao Du Yong Xu Bing-Lin Gu WenHui Duan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第11期118-126,共9页
Molecular dynamics is a powerful simulation tool to explore material properties.Most realistic material systems are too large to be simulated using first-principles molecular dynamics.Classical molecular dynamics has ... Molecular dynamics is a powerful simulation tool to explore material properties.Most realistic material systems are too large to be simulated using first-principles molecular dynamics.Classical molecular dynamics has a lower computational cost but requires accurate force fields to achieve chemical accuracy.In this work,we develop a symmetry-adapted graph neural network framework called the molecular dynamics graph neural network(MDGNN)to construct force fields automatically for molecular dynamics simulations for both molecules and crystals.This architecture consistently preserves translation,rotation,and permutation invariance in the simulations.We also propose a new feature engineering method that includes high-order terms of interatomic distances and demonstrate that the MDGNN accurately reproduces the results of both classical and first-principles molecular dynamics.In addition,we demonstrate that force fields constructed by the proposed model have good transferability.The MDGNN is thus an efficient and promising option for performing molecular dynamics simulations of large-scale systems with high accuracy. 展开更多
关键词 GRAPH NEURAL networks molecular dynamics force FIELDS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部