This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a B...This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a Bayesian classification is performed to the IC peak frequencies.Our analyses draw the following conclusions:(1) The Bayesian classification shows two components with a dividing boundary of log(v_(p)^(IC)/Hz)pIC=22.9.Therefore,the 3743 blazars are divided into low IC peak frequency(LCP) blazars and high IC peak frequency (HCP) blazars.(2) A strong linear correlation exists between IC peak frequency(logv_(p)^(IC)) and γ-ray photon spectral index (Γ).The IC peak frequency can be estimated by an empirical relation logv_(p)^(IC)=–4.5·Γ+32.8 for BL Lacs and logv_(p)^(IC)=4.0+31.4pICfor FSRQs,which is consistent with the result by Abdo et al.(3) The ICspectral curvature and IC peak frequency are not as closely related as the synchrotron curvature and the synchrotron peak frequency.(4) An anti-correlation exists between IC peak frequency and IC peak luminosity,implying that as the IC peak frequency in the γ-ray band decreases,the source becomes more luminous.The beaming effect is stronger for the source with a lower IC peak frequency.(5) Positive correlations exist between IC and synchrotron components for both peak frequencies and peak fluxes,but no clear correlation exists between IC curvature and synchrotron curvature.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U2031112,U2031201,and 11733001)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)+3 种基金the Research Fund of Hunan Education Department(Grant No.20C1273)the Science Research Grants from the China Manned Space Project(Grant No.CMS-CSST-2021-A06)the support from Astrophysics Key Subjects of Guangdong Province and Guangzhou Citysupported by the Guangzhou University(Grant No.YM2020001)。
文摘This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a Bayesian classification is performed to the IC peak frequencies.Our analyses draw the following conclusions:(1) The Bayesian classification shows two components with a dividing boundary of log(v_(p)^(IC)/Hz)pIC=22.9.Therefore,the 3743 blazars are divided into low IC peak frequency(LCP) blazars and high IC peak frequency (HCP) blazars.(2) A strong linear correlation exists between IC peak frequency(logv_(p)^(IC)) and γ-ray photon spectral index (Γ).The IC peak frequency can be estimated by an empirical relation logv_(p)^(IC)=–4.5·Γ+32.8 for BL Lacs and logv_(p)^(IC)=4.0+31.4pICfor FSRQs,which is consistent with the result by Abdo et al.(3) The ICspectral curvature and IC peak frequency are not as closely related as the synchrotron curvature and the synchrotron peak frequency.(4) An anti-correlation exists between IC peak frequency and IC peak luminosity,implying that as the IC peak frequency in the γ-ray band decreases,the source becomes more luminous.The beaming effect is stronger for the source with a lower IC peak frequency.(5) Positive correlations exist between IC and synchrotron components for both peak frequencies and peak fluxes,but no clear correlation exists between IC curvature and synchrotron curvature.