This paper presents the results of a series of numerical modeling experiments aimed at quantifying blast- induced degradation of shear strength of discontinuities. Near-field vibration history of a single-row pro- duc...This paper presents the results of a series of numerical modeling experiments aimed at quantifying blast- induced degradation of shear strength of discontinuities. Near-field vibration history of a single-row pro- duction blast in a. limestone quarry was used as input to the nu .merical model. For this. purpose, two rock blocks, representing a stiff massive sulfide rock and a weaker limestone rock, were simulated using the 2D Particle Flow Code (PFC2D). Rock mass conta!ning a single inclined joint was modeled as Mohr- Coulomb. The results show that the crack generation rate is increased in both samples after repetitive vibration loading. Joint shear strength degradation rate in !he stiffer massive sulfide rock sample is higher than the softer limestone rock, which is attributed to the higher seismic impedance mismatch. The results show that even low-amplitude blasting vibrations (〈80 mm/s), when repeated as in multi-hole blasts, can significantly degrade joint shear strength in the nearby pit walls.展开更多
基金financial provided by the Natural Science and Engineering Research Council of Canada (NSERC)
文摘This paper presents the results of a series of numerical modeling experiments aimed at quantifying blast- induced degradation of shear strength of discontinuities. Near-field vibration history of a single-row pro- duction blast in a. limestone quarry was used as input to the nu .merical model. For this. purpose, two rock blocks, representing a stiff massive sulfide rock and a weaker limestone rock, were simulated using the 2D Particle Flow Code (PFC2D). Rock mass conta!ning a single inclined joint was modeled as Mohr- Coulomb. The results show that the crack generation rate is increased in both samples after repetitive vibration loading. Joint shear strength degradation rate in !he stiffer massive sulfide rock sample is higher than the softer limestone rock, which is attributed to the higher seismic impedance mismatch. The results show that even low-amplitude blasting vibrations (〈80 mm/s), when repeated as in multi-hole blasts, can significantly degrade joint shear strength in the nearby pit walls.