Gap states in amorphous hydrogenated silicon (a-Si:H) doped and microcrystalline silicon doped n and p were examined by analysis of subgap absorption spectra obtained by the Constant Photocurrent Method (CPM) and the ...Gap states in amorphous hydrogenated silicon (a-Si:H) doped and microcrystalline silicon doped n and p were examined by analysis of subgap absorption spectra obtained by the Constant Photocurrent Method (CPM) and the Photothermal Deflection Spectroscopy (PDS). Assuming a Gaussian distribution of defect states in the gap, broad distribution of states was found in a-Si:H and doped a-Si:H. A dependence of the defect concentration on Fermi energy was detected and analysed by thermodynamic model of defect formation in a-Si:H.展开更多
文摘Gap states in amorphous hydrogenated silicon (a-Si:H) doped and microcrystalline silicon doped n and p were examined by analysis of subgap absorption spectra obtained by the Constant Photocurrent Method (CPM) and the Photothermal Deflection Spectroscopy (PDS). Assuming a Gaussian distribution of defect states in the gap, broad distribution of states was found in a-Si:H and doped a-Si:H. A dependence of the defect concentration on Fermi energy was detected and analysed by thermodynamic model of defect formation in a-Si:H.