Propane dehydrogenation(PDH)is one of the most effective technologies to produce propene.Non-noble zinc-based catalysts have paid increasing attention because of low cost and nontoxic,compared with industrial Pt and C...Propane dehydrogenation(PDH)is one of the most effective technologies to produce propene.Non-noble zinc-based catalysts have paid increasing attention because of low cost and nontoxic,compared with industrial Pt and Cr-based catalysts.However,they often suffer from limited catalytic activity and poor stability.Here,we introduced moderate Ni into ZnO supported Silicalite-1 zeolite to increase catalytic activity and stability simultaneously.Zn^(2+) was the definite active site and NiZn alloy facilitated the sluggish H recombination into H_(2)via reverse spillover.Furthermore,the introduction of Ni increased Lewis acid strength caused by electron transfer from ZnO to NiZn alloy,contributing to improved stability.For resulted 0.5 NiZn/S-1,propene formation rate was 0.18 mol C_(3)H_(6)·(g Zn)^(-1)·h^(-1) at 550℃,which was above 1.5 times higher than that over Zn/S-1 without Ni.Under stability test,the deactivation of0.5 NiZn/S-1 was 0.019 h^(-1),which was only 1/10 of that over Zn/S-1.展开更多
Catalytic hydrogenolysis of end-of-life polyolefins can produce value-added liquid fuels and therefore holds great promises in plastic waste reuse and environmental remediation.The major challenge limiting the recycli...Catalytic hydrogenolysis of end-of-life polyolefins can produce value-added liquid fuels and therefore holds great promises in plastic waste reuse and environmental remediation.The major challenge limiting the recycling economic benefit is the severe methanation(usually>20%)induced by terminal C–C cleavage and fragmentation in polyolefin chains.Here,we overcome this challenge by demonstrating that Ru single-atom catalyst can effectively suppress methanation by inhibiting terminal C–C cleavage and preventing chain fragmentation that typically occurs on multi-Ru sites.The Ru single-atom catalyst supported on CeO_(2)shows an ultralow CH_(4)yield of 2.2%and a liquid fuel yield of over 94.5%with a production rate of 314.93 gfuels gRu^(−1)h^(−1)at 250℃for 6 h.Such remarkable catalytic activity and selectivity of Ru single-atom catalyst in polyolefin hydrogenolysis offer immense opportunities for plastic upcycling.展开更多
基金Financial supports by the National Natural Science Foundation of China(22025802)the Haihe Laboratory of Sustainable Chemical Transformations(CYZC202101)。
文摘Propane dehydrogenation(PDH)is one of the most effective technologies to produce propene.Non-noble zinc-based catalysts have paid increasing attention because of low cost and nontoxic,compared with industrial Pt and Cr-based catalysts.However,they often suffer from limited catalytic activity and poor stability.Here,we introduced moderate Ni into ZnO supported Silicalite-1 zeolite to increase catalytic activity and stability simultaneously.Zn^(2+) was the definite active site and NiZn alloy facilitated the sluggish H recombination into H_(2)via reverse spillover.Furthermore,the introduction of Ni increased Lewis acid strength caused by electron transfer from ZnO to NiZn alloy,contributing to improved stability.For resulted 0.5 NiZn/S-1,propene formation rate was 0.18 mol C_(3)H_(6)·(g Zn)^(-1)·h^(-1) at 550℃,which was above 1.5 times higher than that over Zn/S-1 without Ni.Under stability test,the deactivation of0.5 NiZn/S-1 was 0.019 h^(-1),which was only 1/10 of that over Zn/S-1.
基金the National Natural Science Foundation of China(51901147)J.C.thanks the support from the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices(ZZ2103)+2 种基金Gusu Innovation and Entrepreneurship Leading Talent Program(ZXL2022492)the Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project.the Advanced Photon Source,an office of Science User Facility operated for the U.S.Department of Energy Office of Science by Argonne National Laboratory and was supported by the U.S.Department of Energy under contract no.DE-AC02-06CH11357.
文摘Catalytic hydrogenolysis of end-of-life polyolefins can produce value-added liquid fuels and therefore holds great promises in plastic waste reuse and environmental remediation.The major challenge limiting the recycling economic benefit is the severe methanation(usually>20%)induced by terminal C–C cleavage and fragmentation in polyolefin chains.Here,we overcome this challenge by demonstrating that Ru single-atom catalyst can effectively suppress methanation by inhibiting terminal C–C cleavage and preventing chain fragmentation that typically occurs on multi-Ru sites.The Ru single-atom catalyst supported on CeO_(2)shows an ultralow CH_(4)yield of 2.2%and a liquid fuel yield of over 94.5%with a production rate of 314.93 gfuels gRu^(−1)h^(−1)at 250℃for 6 h.Such remarkable catalytic activity and selectivity of Ru single-atom catalyst in polyolefin hydrogenolysis offer immense opportunities for plastic upcycling.