Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
We establish a new characterization of the Musielak-Orlicz-Sobolev space on ?n, which includes the classical Orlicz-Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, ...We establish a new characterization of the Musielak-Orlicz-Sobolev space on ?n, which includes the classical Orlicz-Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, in terms of sharp ball averaging functions. Even in a special case, namely, the variable exponent Sobolev space, the obtained result in this article improves the corresponding result obtained by P. H?st? and A. M. Ribeiro [Commun. Contemp. Math., 2017, 19: 1650022] via weakening the assumption f ∈ L^1(R^n) into f ∈ L^1loc(R^n), which was conjectured to be true by Hosto and Ribeiro in the aforementioned same article.展开更多
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金National Natural Science Foundation of China (Grant Nos. 11871254, 11571289. 11571039, 11761131002, 11671185. 11871100)Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2018-111).
文摘We establish a new characterization of the Musielak-Orlicz-Sobolev space on ?n, which includes the classical Orlicz-Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, in terms of sharp ball averaging functions. Even in a special case, namely, the variable exponent Sobolev space, the obtained result in this article improves the corresponding result obtained by P. H?st? and A. M. Ribeiro [Commun. Contemp. Math., 2017, 19: 1650022] via weakening the assumption f ∈ L^1(R^n) into f ∈ L^1loc(R^n), which was conjectured to be true by Hosto and Ribeiro in the aforementioned same article.