期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MAXIMAL FUNCTION CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH BOTH NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING GAUSSIAN ESTIMATES AND BALL QUASI-BANACH FUNCTION SPACES
1
作者 林孝盛 杨大春 +1 位作者 杨四辈 袁文 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期484-514,共31页
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som... Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new. 展开更多
关键词 Hardy space ball quasi-Banach function space Gaussian upper bound estimate non-negative self-adjoint operator maximal function
下载PDF
New characterizations of Musielak-Orlicz-Sobolev spaces via sharp ball averaging functions
2
作者 sibei yang Dachun yang Wen YUAN 《Frontiers of Mathematics in China》 SCIE CSCD 2019年第1期177-201,共25页
We establish a new characterization of the Musielak-Orlicz-Sobolev space on ?n, which includes the classical Orlicz-Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, ... We establish a new characterization of the Musielak-Orlicz-Sobolev space on ?n, which includes the classical Orlicz-Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, in terms of sharp ball averaging functions. Even in a special case, namely, the variable exponent Sobolev space, the obtained result in this article improves the corresponding result obtained by P. H?st? and A. M. Ribeiro [Commun. Contemp. Math., 2017, 19: 1650022] via weakening the assumption f ∈ L^1(R^n) into f ∈ L^1loc(R^n), which was conjectured to be true by Hosto and Ribeiro in the aforementioned same article. 展开更多
关键词 Musielak-Orlicz-Sobolev SPACE Orlicz-Sobolev SPACE variable EXPONENT SOBOLEV SPACE SHARP BALL averaging function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部