期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Accurate Electronic, Transport, and Bulk Properties of Zinc Blende Gallium Arsenide (Zb-GaAs)
1
作者 Yacouba Issa diakite sibiri d. traore +3 位作者 Yuriy Malozovsky Bethuel Khamala Lashounda Franklin diola Bagayoko 《Journal of Modern Physics》 2017年第4期531-546,共16页
We report accurate, calculated electronic, transport, and bulk properties of zinc blende gallium arsenide (GaAs). Our ab-initio, non-relativistic, self-con-sistent calculations employed a local density approximation (... We report accurate, calculated electronic, transport, and bulk properties of zinc blende gallium arsenide (GaAs). Our ab-initio, non-relativistic, self-con-sistent calculations employed a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. We strictly followed the Bagayoko, Zhao, and William (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Our calculated, direct band gap of 1.429 eV, at an experimental lattice constant of 5.65325 &Aring;, is in excellent agreement with the experimental values. The calculated, total density of states data reproduced several experimentally determined peaks. We have predicted an equilibrium lattice constant, a bulk modulus, and a low temperature band gap of 5.632 &Aring;, 75.49 GPa, and 1.520 eV, respectively. The latter two are in excellent agreement with corresponding, experimental values of 75.5 GPa (74.7 GPa) and 1.519 eV, respectively. This work underscores the capability of the local density approximation (LDA) to describe and to predict accurately properties of semiconductors, provided the calculations adhere to the conditions of validity of DFT. 展开更多
关键词 Density Functional Theory BZW-EF Method ELECTRONIC Properties Band Gap Predictions GALLIUM ARSENIDE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部