期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance and mechanism of La-Fe metal-organic framework as a highly efficient adsorbent for fluoride removal from mine water
1
作者 Chaomin Jia Jianbing Wang +3 位作者 Huijiao Wang sichao zhu Xiaohui Zhang Yuxiang Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期245-257,共13页
Water fluoride pollution has caused non-negligible harm to the environment and humans,and thus it is crucial to find a suitable treatment technology.In this study,La-Fe@PTA adsorbent was synthesized for the defluorida... Water fluoride pollution has caused non-negligible harm to the environment and humans,and thus it is crucial to find a suitable treatment technology.In this study,La-Fe@PTA adsorbent was synthesized for the defluoridation of mine water.The results showed that the optimum conditions for defluoridation by La-Fe@PTA were p H close to 7.0,the initial F-concentration of 10 mg/L,the dosage of 0.5 g/L and the adsorption time of 240 min.Compared with SO_4^(2-),Cl^(-),NO_(3)^(-),Ca^(2+)and Mg^(2+),CO_(3)^(2-)and HCO_(3)^(-)presented severer inhibition on fluoride uptake by La-Fe@PTA.The adsorption process fits well with the pseudo-second-order kinetic model and Freundlich model,and the maximum adsorption capacity of Langmuir model was 95 mg/g.Fixed-bed adsorption results indicated that fluoride in practical fluorinated mine water could be effectively removed from 3.6 mg/L to less than 1.5 mg/L within130 bed volume(BV)by using 1.5 g La-Fe@PTA.Furthermore,the adsorbent still had good adsorption capacity after regeneration,which confirms the great application potential of La-Fe@PTA as a fluoride ion adsorbent.The mechanism analysis showed that La-Fe@PTA adsorption of fluorine ions is a physicochemical reaction driven by electrostatic attraction and ion exchange. 展开更多
关键词 ADSORPTION La-Fe@PTA Fluoride ion Mine water MECHANISM
原文传递
A novel electro-Fenton hybrid system for enhancing the interception of volatile organic compounds in membrane distillation desalination
2
作者 Hongxin Liu Kuiling Li +6 位作者 Kunpeng Wang Zhiyong Wang Zimou Liu sichao zhu Dan Qu Yu Zhang Jun Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期189-199,共11页
Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of... Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment. 展开更多
关键词 Membrane distillation VOC interception Interfacial oxidation ELECTRO-FENTON Hypersaline wastewater
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部