期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Eudragit®-PEG Nanoparticles: Physicochemical Characterization and Interfacial Tension Measurements
1
作者 Papa Mady Sy sidy mouhamed dieng +4 位作者 Alphonse Rodrigue Djiboune Louis Augustin Diaga Diouf Boucar Ndong Gora Mbaye Mounibé Diarra 《Open Journal of Biophysics》 2024年第2期121-131,共11页
The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potent... The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potentials were studied and compared at a water/cyclohexane model interface using a droplet tensiometer (Tracker Teclis, Longessaigne, France). The progressive interfacial adsorption of the NPs in the aqueous phase was monitored by tensiometry. The model interface was maintained and observed in a drop tensiometer, analyzed via axisymmetric drop shape analysis (ADSA), to determine the interfacial properties. Given the direct relationship between the stability of Pickering emulsions (emulsions stabilized by solid nanoparticles) and the interfacial properties of these layers, different nanoparticle systems were compared. Specifically, Eudragit NPs of different sizes were examined. Moreover, the reduction of the Zeta potential with PEG-6000 induces partial aggregation of the NPs (referred to as NP flocs), significantly impacting the stability of the interfacial layer. Dynamic surface tension measurements indicate a significant decrease in interfacial tension with Eudragit® nanoparticles (NPs). This reduction correlates with the size of the NPs, highlighting that this parameter does not operate in isolation. Other factors, such as the contact angle and wettability of the nanoparticles, also play a critical role. Notably, larger NPs further diminished the interfacial tension. This study enhances our understanding of the stability of Pickering emulsions stabilized by Eudragit® L100 polymeric nanoparticles. 展开更多
关键词 NANOPARTICLES Eudragit® PEG Interfacial Tension Pickering Emulsion
下载PDF
Multiple Emulsions Able to Be Used for Oral Administration of Active Pharmaceutical Ingredients: Physico-Chemical Parameters Study of Different Phases
2
作者 Louis Augustin Diaga Diouf Alphonse Rodrigue Djiboune +4 位作者 Mamadou Soumboundou sidy mouhamed dieng Papa Mady Sy Gora Mbaye Mounibé Diarra 《Journal of Modern Physics》 2020年第10期1528-1535,共8页
Multiple emulsions are of great therapeutic interest especially in the administration of medicines which can be inactivated by digestive enzymes;moreover the researches of formulation not being often easy, a control o... Multiple emulsions are of great therapeutic interest especially in the administration of medicines which can be inactivated by digestive enzymes;moreover the researches of formulation not being often easy, a control of the different phases physicochemical parameters would be of great interest in rapid formulations and at low cost. When formulating emulsions, the preliminary tests, also known as formulation tests, constitute a step which can be long and expensive because of the quantity of reagents that can be used. A rigorous methodology could thus be of great interest, which is at the aim of our study which consists of evaluating the physico-chemical parameters of different phases used to make thus multiple emulsions. In our study, physico-chemical parameters such as conductivity, pH, density, viscosity, and surface tension have been studied by direct measurement using equipment and also by means of suitable mounting. The results showed that the pH and the surface tension have an important role in the prediction of the stability of emulsions, these latter must be of the same order of magnitude. For all phases conductivity does not have too much interest apart from helping to determine the type of the emulsion. 展开更多
关键词 Active Pharmaceutical Ingredients Multiple Emulsions STABILITY Physico-Chemical Parameters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部