Purpose: To evaluate a me-vTE-SPGR (multi echo variable TE Spoiled Gradient Echo Sequence) approach for quantitative T2* mapping of the ME (menisci), the PT (patellar tendon), the ACL (anterior cruciate ligam...Purpose: To evaluate a me-vTE-SPGR (multi echo variable TE Spoiled Gradient Echo Sequence) approach for quantitative T2* mapping of the ME (menisci), the PT (patellar tendon), the ACL (anterior cruciate ligament), the PCL (posterior cruciate ligament) and to compare the results between normal and pathological tissue of the ME in the knee joint at 3T (3 Tesla). Methods: Eighteen consecutive knee patients (35.7± 11.6 years) were examined on 3T. In addition to standard morphological MRI, T2*-maps were derived from a 0.7 mm isotropic me-vTE-SPGR scan. T2*-values were assessed by two independent observers using an ROI analysis for the ME (4 different regions: posterior and anterior horn of the medial and lateral meniscus), PT, ACL and PCL. Intra-class correlation between readers was calculated. Results: On morphological MRI, the PT, ACL and PCL were diagnosed as normal in all cases. Degenerative meniscus and meniscal tears were diagnosed in 13 cases and 9 cases, respectively. T2*-values of the menisci on me-vTE-SPGR scans, in relation to morphological imaging, were normal (N = 50; 6.0 ±0.9 ms); degenerative meniscus (N = 13; 8.0± 1.6 ms); meniscal tears (N = 9; 12.9 ±3.9 ms), with significant differences between all groups (P 〈 0.05)/ significantly higher T2*-values in degenerative meniscus and meniscal tears. Mean T2* relaxation times for the PT, ACL and PCL were 2.9± 0.8 ms, 8.4 ± 1.6 ms and 8.9 + 1.3 ms respectively. Intra-class correlation values between readers for the ME, PT, ACL and PCL were R2 = 0.962, R2 = 0.927, R2 = 0.594 and R2= 0.648, respectively. Conclusion: Isotropic 3D (three-dimensional) me vTE-SPGR imaging is able to quantify T2* values of multiple tissues in the knee joint with short T2 relaxation times.展开更多
文摘Purpose: To evaluate a me-vTE-SPGR (multi echo variable TE Spoiled Gradient Echo Sequence) approach for quantitative T2* mapping of the ME (menisci), the PT (patellar tendon), the ACL (anterior cruciate ligament), the PCL (posterior cruciate ligament) and to compare the results between normal and pathological tissue of the ME in the knee joint at 3T (3 Tesla). Methods: Eighteen consecutive knee patients (35.7± 11.6 years) were examined on 3T. In addition to standard morphological MRI, T2*-maps were derived from a 0.7 mm isotropic me-vTE-SPGR scan. T2*-values were assessed by two independent observers using an ROI analysis for the ME (4 different regions: posterior and anterior horn of the medial and lateral meniscus), PT, ACL and PCL. Intra-class correlation between readers was calculated. Results: On morphological MRI, the PT, ACL and PCL were diagnosed as normal in all cases. Degenerative meniscus and meniscal tears were diagnosed in 13 cases and 9 cases, respectively. T2*-values of the menisci on me-vTE-SPGR scans, in relation to morphological imaging, were normal (N = 50; 6.0 ±0.9 ms); degenerative meniscus (N = 13; 8.0± 1.6 ms); meniscal tears (N = 9; 12.9 ±3.9 ms), with significant differences between all groups (P 〈 0.05)/ significantly higher T2*-values in degenerative meniscus and meniscal tears. Mean T2* relaxation times for the PT, ACL and PCL were 2.9± 0.8 ms, 8.4 ± 1.6 ms and 8.9 + 1.3 ms respectively. Intra-class correlation values between readers for the ME, PT, ACL and PCL were R2 = 0.962, R2 = 0.927, R2 = 0.594 and R2= 0.648, respectively. Conclusion: Isotropic 3D (three-dimensional) me vTE-SPGR imaging is able to quantify T2* values of multiple tissues in the knee joint with short T2 relaxation times.