The artificial plant seed is a new technology developed on the basis of the in vitro plant culture technology.As a high-tech achievement with great development potential and economic value in the 21^(st) century,artif...The artificial plant seed is a new technology developed on the basis of the in vitro plant culture technology.As a high-tech achievement with great development potential and economic value in the 21^(st) century,artificial plant seeds have great potential advantages.This paper briefly introduced artificial plant seeds,their composition and advantages,the preparation of artificial plant seeds and the application of artificial plant seeds.展开更多
The repairing effect of poly(N-vinylpyrrolidone-co-methacrylic acid)on permed or bleached damaged hair was studied.The combing and tensile strength of permed and bleached hair before and after treatment with the copol...The repairing effect of poly(N-vinylpyrrolidone-co-methacrylic acid)on permed or bleached damaged hair was studied.The combing and tensile strength of permed and bleached hair before and after treatment with the copolymer solution were tested,and the effects of the mass fraction of copolymer solution and immerseing time on the combing and tensile strength for permed or bleached damaged hair were investigated.The repair mechanism of permed or bleached damaged hair was also explored.The results show that when the immersing time is 3 hours,the tensile strength of the permed hair increases with the mass fraction of the copolymer solution Tensile strength within 0%-0.3%,but no obvious change is observed when250 Yield strength the mass fraction is over 0.3%.Therefore,the optimal mass 200 fraction of the copolymer solution for repairing the permed hair(cN/dtex)is 0.3%.Similarly,the optimal mass fraction of the copolymer 150strength/solution for repairing the bleached hair is 0.5%.Furthermore,the effects of immersing time on the tensile strength of the100Tensile damaged hair fibers were compared between the permed and90 bleached hair before and after treatment with the copolymer500.40.30.500.10.2 solution.Coincidentally,the optimal immersion time for permedw(P(NVP-co-MAA))/%or bleached damaged hair is both 2 hours.The tensile strength of the permed and bleached hair soaked in 0.3%and 0.5%copolymer solutions for 2 hours increases by 15.55%and 18.12%,respectively,compared to untreated hair.Through infrared spectroscopy analysis,it is found that the amide II band in hair fibers shifted to the blue after repair,with the wave number shift of 11.12 and 11.09 cm^(-1),which confirm the formation of hydrogen bonds in the hair samples.Additionally,the urea hydrogen bond disruption experiment demonstrates that urea does not disrupt the hydrogen bonds in untreated hair fibers,but prevents the formation of new hydrogen bonds in damaged hair fibers.It further validates that the improvement of the tensile strength of the copolymer treated damaged hair fibers is mainly due to the formation of hydrogen bonds.After treatment with the copolymer,the dry and wet combing friction decrease by 30.73%and 28.55%for the permed hair,and decrease by 28.55%and 24.83%for the bleached hairs,respectively.The scanning electron microscope shows that the copolymer can flatten the cuticle and fill the space between the raised cuticles.展开更多
基金Supported by Dalian Science and Technology Innovation Project(2019J13SN120).
文摘The artificial plant seed is a new technology developed on the basis of the in vitro plant culture technology.As a high-tech achievement with great development potential and economic value in the 21^(st) century,artificial plant seeds have great potential advantages.This paper briefly introduced artificial plant seeds,their composition and advantages,the preparation of artificial plant seeds and the application of artificial plant seeds.
文摘The repairing effect of poly(N-vinylpyrrolidone-co-methacrylic acid)on permed or bleached damaged hair was studied.The combing and tensile strength of permed and bleached hair before and after treatment with the copolymer solution were tested,and the effects of the mass fraction of copolymer solution and immerseing time on the combing and tensile strength for permed or bleached damaged hair were investigated.The repair mechanism of permed or bleached damaged hair was also explored.The results show that when the immersing time is 3 hours,the tensile strength of the permed hair increases with the mass fraction of the copolymer solution Tensile strength within 0%-0.3%,but no obvious change is observed when250 Yield strength the mass fraction is over 0.3%.Therefore,the optimal mass 200 fraction of the copolymer solution for repairing the permed hair(cN/dtex)is 0.3%.Similarly,the optimal mass fraction of the copolymer 150strength/solution for repairing the bleached hair is 0.5%.Furthermore,the effects of immersing time on the tensile strength of the100Tensile damaged hair fibers were compared between the permed and90 bleached hair before and after treatment with the copolymer500.40.30.500.10.2 solution.Coincidentally,the optimal immersion time for permedw(P(NVP-co-MAA))/%or bleached damaged hair is both 2 hours.The tensile strength of the permed and bleached hair soaked in 0.3%and 0.5%copolymer solutions for 2 hours increases by 15.55%and 18.12%,respectively,compared to untreated hair.Through infrared spectroscopy analysis,it is found that the amide II band in hair fibers shifted to the blue after repair,with the wave number shift of 11.12 and 11.09 cm^(-1),which confirm the formation of hydrogen bonds in the hair samples.Additionally,the urea hydrogen bond disruption experiment demonstrates that urea does not disrupt the hydrogen bonds in untreated hair fibers,but prevents the formation of new hydrogen bonds in damaged hair fibers.It further validates that the improvement of the tensile strength of the copolymer treated damaged hair fibers is mainly due to the formation of hydrogen bonds.After treatment with the copolymer,the dry and wet combing friction decrease by 30.73%and 28.55%for the permed hair,and decrease by 28.55%and 24.83%for the bleached hairs,respectively.The scanning electron microscope shows that the copolymer can flatten the cuticle and fill the space between the raised cuticles.