期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A general strategy to the synthesis of carbon-supported PdM(M=Co,Fe and Ni)nanodendrites as high-performance electrocatalysts for formic acid oxidation 被引量:1
1
作者 Yanrong Ma Tongfei Li +5 位作者 Hao Chen Xiaojie Chen sihui deng Lin Xu Dongmei Sun Yawen Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1238-1244,共7页
Rational synthesis of a new class of electrocatalysts with high-performance and low-cost is of great significance for future fuel cell devices. Herein, we demonstrate a general one-step simultaneous reduction method t... Rational synthesis of a new class of electrocatalysts with high-performance and low-cost is of great significance for future fuel cell devices. Herein, we demonstrate a general one-step simultaneous reduction method to prepare carbon-supported Pd M(M = Co, Fe, Ni) alloyed nanodendrites with the assistance of oleylamine and octadecylene. The morphology, structure and composition of the obtained Pd M nanodendrites/C catalysts have been fully characterized. The combination of the dendritic structural feature and alloyed synergy offer higher atomic utilization efficiency, excellent catalytic activity and enhanced stability for the formic acid oxidation reaction(FAOR). Strikingly, the as-synthesized Pd Co nanodendrites/C catalyst could afford a mass current density of 2467.7 A g^(-1), which is almost 3.53 and 10.4 times higher than those of lab-made Pd/C sample(698.3 A g^(-1)) and commercial Pd/C catalyst(237.6 A g^(-1)), respectively. Furthermore, the PdC o nanodendrites/C catalyst also exhibit superior stability relative to the Pd/C catalysts, make it a promising anodic electrocatalyst in practical fuel cells in the future. Additionally, the present feasible synthetic approach is anticipated to provide a versatile strategy toward the preparation of other metal alloy nanodendrites/carbon nanohybrids. 展开更多
关键词 PdM alloy Nanodendrites ELECTROCATALYSTS Formic acid oxidation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部