The construction and application of traditional high-strength 7075 aluminum alloy(Al7075) through selective laser melting(SLM) are currently restricted by the serious hot cracking phenomenon. To address this critical ...The construction and application of traditional high-strength 7075 aluminum alloy(Al7075) through selective laser melting(SLM) are currently restricted by the serious hot cracking phenomenon. To address this critical issue, in this study, Si is employed to assist the SLM printing of high-strength Al7075. The laser energy density during SLM is optimized, and the eff ects of Si element on solidification path, relative density, microstructure and mechanical properties of Al7075 alloy are studied systematically. With the modified solidification path, laser energy density, and the dense microstructure with refined grain size and semi-continuous precipitates network at grain boundaries, which consists of fine Si, β-MgSi, Q-phase and θ-AlCu, the hot cracking phenomenon and mechanical properties are eff ectively improved. As a result, the tensile strength of the SLM-processed Si-modified Al7075 can reach 486 ± 3 MPa, with a high relative density of ~ 99.4%, a yield strength of 291 ± 8 MPa, fracture elongation of(6.4 ± 0.4)% and hardness of 162 ± 2(HV) at the laser energy density of 112.5 J/mm~3. The main strengthening mechanism with Si modification is demonstrated to be the synergetic enhancement of grain refinement, solution strengthening, load transfer, and dislocation strengthening. This work will inspire more new design of high-strength alloys through SLM.展开更多
基金financially supported by the Joint Fund Project of Equipment Pre-research of Education Ministry(Grant No.6141A02033230)。
文摘The construction and application of traditional high-strength 7075 aluminum alloy(Al7075) through selective laser melting(SLM) are currently restricted by the serious hot cracking phenomenon. To address this critical issue, in this study, Si is employed to assist the SLM printing of high-strength Al7075. The laser energy density during SLM is optimized, and the eff ects of Si element on solidification path, relative density, microstructure and mechanical properties of Al7075 alloy are studied systematically. With the modified solidification path, laser energy density, and the dense microstructure with refined grain size and semi-continuous precipitates network at grain boundaries, which consists of fine Si, β-MgSi, Q-phase and θ-AlCu, the hot cracking phenomenon and mechanical properties are eff ectively improved. As a result, the tensile strength of the SLM-processed Si-modified Al7075 can reach 486 ± 3 MPa, with a high relative density of ~ 99.4%, a yield strength of 291 ± 8 MPa, fracture elongation of(6.4 ± 0.4)% and hardness of 162 ± 2(HV) at the laser energy density of 112.5 J/mm~3. The main strengthening mechanism with Si modification is demonstrated to be the synergetic enhancement of grain refinement, solution strengthening, load transfer, and dislocation strengthening. This work will inspire more new design of high-strength alloys through SLM.