Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD). Diaphragm injury is observed in patients with COPD. However, the potential role of smoking in triggering or perpetuating muscle inju...Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD). Diaphragm injury is observed in patients with COPD. However, the potential role of smoking in triggering or perpetuating muscle injury is unknown. The present study was aimed at evaluating the potential role of commercial tobacco smoke as a direct cause of skeletal muscle injury in experimental conditions. Seventy Wistar rats (170 - 250 g) were assigned to smoking (n = 49) or non-smoking (n = 21) groups. The smoking groups were submitted to a single or multiple (i.e., five or thirty) daily sessions of cigarette smoking in an inhalatory chamber (time length: 2 h each session). The level of exposure was constant and assessed by CO concentrations (50 ppm) and serum cotinine analysis. Animals submitted to a single smoke exposure and the corresponding controls were euthanized in groups at 0 h, 2 h, 4 h, 24 h or 48 h after completing the exposure. Animals submitted to multiple exposures were euthanized at 0 h after smoking. Samples from vastus lateralis muscle were obtained and processed for assessing cell injury and selected protein expression. Monoclonal anti-albumin antibodies were used to identify muscle fibers with sarcolemmal (membrane) injury. Subcellular muscle injury was assessed using transmission electron microscopy (EM). MyoD, myogenin and α-tubulin were immunodetected using western blot techniques. Exposure to cigarette smoke associated with significant membrane damage (mean relative difference (MRD) with controls: +181%, p = 0.004) and sarcomere disruptions (MRD: +226%, p = 0.001). Expression of MyoD and myogenin (normalized to α-tubulin) were significantly increased at 4 h and remained increased at 48 h post-exposure. We conclude that not only a single but also consecutive exposure to tobacco smoke have acute deleterious effects on peripheral muscle structure. A rapid induction of subrogate markers of skeletal muscle stress and repair processes associates to sarcolemmal and sarcomere damage.展开更多
基金PLAN DE FORTALECIMIENTO INSTITUCIONAL Ref.477-2012 y Ref.734-2013Proyecto Exencion de Impuestos,COLCIENCIAS ref.contrato 656624037813-2013Red Respira(RTIC C03/11,Fondo de Investigacion Sanitaria,Instituto de Salud Carlos III),SEPAR,Ministerio de Educacion,Cultura y Deporte de Espana
文摘Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD). Diaphragm injury is observed in patients with COPD. However, the potential role of smoking in triggering or perpetuating muscle injury is unknown. The present study was aimed at evaluating the potential role of commercial tobacco smoke as a direct cause of skeletal muscle injury in experimental conditions. Seventy Wistar rats (170 - 250 g) were assigned to smoking (n = 49) or non-smoking (n = 21) groups. The smoking groups were submitted to a single or multiple (i.e., five or thirty) daily sessions of cigarette smoking in an inhalatory chamber (time length: 2 h each session). The level of exposure was constant and assessed by CO concentrations (50 ppm) and serum cotinine analysis. Animals submitted to a single smoke exposure and the corresponding controls were euthanized in groups at 0 h, 2 h, 4 h, 24 h or 48 h after completing the exposure. Animals submitted to multiple exposures were euthanized at 0 h after smoking. Samples from vastus lateralis muscle were obtained and processed for assessing cell injury and selected protein expression. Monoclonal anti-albumin antibodies were used to identify muscle fibers with sarcolemmal (membrane) injury. Subcellular muscle injury was assessed using transmission electron microscopy (EM). MyoD, myogenin and α-tubulin were immunodetected using western blot techniques. Exposure to cigarette smoke associated with significant membrane damage (mean relative difference (MRD) with controls: +181%, p = 0.004) and sarcomere disruptions (MRD: +226%, p = 0.001). Expression of MyoD and myogenin (normalized to α-tubulin) were significantly increased at 4 h and remained increased at 48 h post-exposure. We conclude that not only a single but also consecutive exposure to tobacco smoke have acute deleterious effects on peripheral muscle structure. A rapid induction of subrogate markers of skeletal muscle stress and repair processes associates to sarcolemmal and sarcomere damage.