期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fuzzy least brain storm optimization and entropy-based Euclidean distance for multimodal vein-based recognition system 被引量:1
1
作者 Dipti Verma sipi dubey 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2360-2371,共12页
Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image f... Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image for the person identification. In this work, the fuzzy least brain storm optimization and Euclidean distance(EED) are proposed for the vein based recognition system. Initially, the input image is fed into the region of interest(ROI) extraction which obtains the appropriate image for the subsequent step. Then, features or vein pattern is extracted by the image enlightening, circular averaging filter and holoentropy based thresholding. After the features are obtained, the entropy based Euclidean distance is proposed to fuse the features by the score level fusion with the weight score value. Finally, the optimal matching score is computed iteratively by the newly developed fuzzy least brain storm optimization(FLBSO) algorithm. The novel algorithm is developed by the least mean square(LMS) algorithm and fuzzy brain storm optimization(FBSO). Thus, the experimental results are evaluated and the performance is compared with the existing systems using false acceptance rate(FAR), false rejection rate(FRR) and accuracy. The performance outcome of the proposed algorithm attains the higher accuracy of 89.9% which ensures the better recognition rate. 展开更多
关键词 MULTIMODALITY BRAIN STORM OPTIMIZATION (BSO) least mean square (LMS) score level fusion recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部