期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current
1
作者 Kun Yi siqi xiang +2 位作者 Mengcheng Zhou Xinfang Zhang Furui Du 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第9期1511-1522,共12页
Residual stress in high-carbon steel affects the dimensional accuracy, structural stability, and integrity of components. Although the evolution of residual stress under an electric field has received extensive attent... Residual stress in high-carbon steel affects the dimensional accuracy, structural stability, and integrity of components. Although the evolution of residual stress under an electric field has received extensive attention, its elimination mechanism has not been fully clarified. In this study, it was found that the residual stress of high-carbon steel could be effectively relieved within a few minutes through the application of a low density pulse current. The difference between the current pulse treatment and traditional heat treatment in reducing residual stress is that the electric pulse provides additional Gibbs free energy for the system, which promotes dislocation annihilation and carbon atom diffusion to form carbides, thus reducing the free energy of the system. The electroplastic and thermal effects of the pulse current promoted the movement of dislocations under the electric field, thus eliminating the internal stress caused by dislocation entanglement. The precipitation of carbides reduced the carbon content of the steel matrix and lattice shrinkage, thereby reducing the residual tensile stress. Considering that a pulsed current has the advantages of small size, small power requirement, continuous output, and continuously controllable parameters, it has broad application prospects for eliminating residual stress. 展开更多
关键词 Residual stress Pulsed electric current Carbide precipitation
原文传递
Residual Stress Removal Under Pulsed Electric Current 被引量:4
2
作者 siqi xiang Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第2期281-289,共9页
The effect of a pulsed electric current on the residual stress evolution of metal materials has been investigated.It was found that the surface and internal residual stresses in the as-quenched samples were reduced dr... The effect of a pulsed electric current on the residual stress evolution of metal materials has been investigated.It was found that the surface and internal residual stresses in the as-quenched samples were reduced dramatically by electropulsing.A large number of experimental data show that the residual stress reduction is proportional to the initial residual stress and related to the material properties and electropulsing parameters.Under the combined actions of drift electrons,Joule heating,and residual stress,the dislocation mobility was enhanced,resulting in plastic strain and the decrease in residual stress.Drift electrons played a unique role in the electropulsing treatment,acting as an additional force pushing dislocations forward.The dislocations ultimately accumulated at a grain boundary,forming a parallel arrangement.Finally,the phenomenological equation of the residual stress evolution under electropulsing was derived from the experimental data. 展开更多
关键词 Electroplastic RESIDUAL stress DISLOCATION MOVEMENT PHENOMENOLOGICAL equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部