期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Validation and correction of sea surface salinity retrieval from SMAP 被引量:1
1
作者 sisi qin Hui Wang +3 位作者 Jiang Zhu Liying Wan Yu Zhang Haoyun Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第3期148-158,共11页
In this study, sea surface salinity(SSS) Level 3(L3) daily product derived from soil moisture active passive(SMAP)during the year 2016, was validated and compared with SSS daily products derived from soil Moisture and... In this study, sea surface salinity(SSS) Level 3(L3) daily product derived from soil moisture active passive(SMAP)during the year 2016, was validated and compared with SSS daily products derived from soil Moisture and ocean salinity(SMOS) and in-situ measurements. Generally, the root mean square error(RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the sea surface temperature(SST). Then, a regression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product. 展开更多
关键词 sea surface salinity(SSS) SOIL MOISTURE active passive(SMAP) SOIL MOISTURE and ocean salinity(SMOS) VALIDATION CORRECTION
下载PDF
Kaiso mainly locates in the nucleus in vivo and binds to methylated,but not hydroxymethylated DNA 被引量:1
2
作者 sisi qin Baozhen Zhang +3 位作者 Wei Tian Liankun Gu Zheming Lu Dajun Deng 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2015年第2期148-155,共8页
Objective: Kaiso is upregulated in many cancers and proposed to bind with both methylated- and unmethylated-DNA in the nucleus as a transcriptional repressor. The objective is to define its subcellnlar localization i... Objective: Kaiso is upregulated in many cancers and proposed to bind with both methylated- and unmethylated-DNA in the nucleus as a transcriptional repressor. The objective is to define its subcellnlar localization in vivo and exact binding DNA sequences in cells. Methods: Compartmentalization of exogenous Kaiso in cells was tracked with enhanced green fluorescence protein (EGFP) tag. The endogenous Kaiso expression in gastric carcinoma tissue was examined with immunohistochemical staining. Kaiso-DNA binding was tested using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (CHIP). Results: Kaiso mainly localized in the nucleus of cancer and stromal cells in vivo, but remained in the cytoplasm of cultured cells. Most importantly, nuclear Kaiso can bind with the methylated-CGCG- containing sequence in the CDKN2A promoter, but not with the hydroxymethylated-CGCG sequence in HCT116 cells. Conclusions: Kaiso locates mainly in the nucleus in vivo where it binds with the methylated-CGCG sequences, but does not bind with the hydroxymethylated-CGCG sequences. 展开更多
关键词 Kaiso COMPARTMENTALIZATION DNA binding METHYLATION HYDROXYMETHYLATION CDKN2A
下载PDF
Effects of Different Farming Methods and Their Effects on Soil Physicochemical Properties of Guilin Maojian Tea Gardens
3
作者 Lingyun ZHANG Shuyi LI +5 位作者 sisi qin Changjian JIANG Qifa LONG Min SU Chusheng LIU Qianhua WU 《Agricultural Biotechnology》 CAS 2018年第5期186-190,共5页
In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties ... In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties of tea garden soil were studied through the modification of the test sites with the non-farming land as the control. The results showed that human farming, mini-tiller farming and crawler tractor farming could improve the physical and chemical properties of soil. After farming, the soil had good water retention but low moisture content compared to the control group, while the soil bulk density and hardness value were significantly lower than those of the control, and the porosity of soil was significantly higher than that of contrast. With the passage of time, soil bulk density and hardness value gradually increased after farming, while the porosity of soil decreased gradually. There were great differences in the effects, efficiencies and costs of different farming methods. Crawler tractor had the best and most stable farming effect, and the operation efficiency was 10 times that of human farming while the cost was only 0.39 times of human farming. Therefore, it was feasible to adopt mini-tiller or crawler tractor to carry out mechanical farming of Guilin Maojian tea garden, which provided theoretical references for the soil property improvement using mechanical farming and was favorable for promoting the popularization of farming machines and the acceleration of mechanization of tea gardens. But for tea plantations that are intended to be mechanized, apart from the mechanical and technical personnel to be configured in place, the site conditions, planting modes and mechanical way reservation of tea garden should be planned accordingly. It is recommended to select flat or gentle slope for reclamation, and preference is given to non-sexual tea tree varieties with big line spacing over 180 cm long. Moreover, the main road construction should be more than 3.0 m, and trunk road 2.0 m or above. And isolation ditch and drain should be set between the tea garden and the surrounding mountain forests and farmland. 展开更多
关键词 Guilin Maojian tea Tea garden Farming methods SOIL Physical and chemical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部