Estimating an accurate six-degree-of-freedom(6-Do F)pose from correspondences with outliers remains a critical issue to 3D rigid registration.Random sample consensus(RANSAC)and its variants are popular solutions to th...Estimating an accurate six-degree-of-freedom(6-Do F)pose from correspondences with outliers remains a critical issue to 3D rigid registration.Random sample consensus(RANSAC)and its variants are popular solutions to this problem.Although there have been a number of RANSAC-fashion estimators,two issues remain unsolved.First,it is unclear which estimator is more appropriate to a particular application.Second,the impacts of different sampling strategies,hypothesis generation methods,hypothesis evaluation metrics,and stop criteria on the overall estimators remain ambiguous.This work fills these gaps by first considering six existing RANSAC-fashion methods and then proposing eight variants for a comprehensive evaluation.The objective is to thoroughly compare estimators in the RANSAC family,and evaluate the effects of each key stage on the eventual 6-Do F pose estimation performance.Experiments have been carried out on four standard datasets with different application scenarios,data modalities,and nuisances.They provide us with input correspondence sets with a variety of inlier ratios,spatial distributions,and scales.Based on the experimental results,we summarize remarkable outcomes and valuable findings,so as to give practical instructions to real-world applications,and highlight current bottlenecks and potential solutions in this research realm.展开更多
基金supported in part by the National Natural Science Foundation of China(NFSC)(62002295,U19B2037)China Postdoctoral Science Foundation(2020M673319)+1 种基金Shaanxi Provincial Key R&D Program(2021KWZ-03)the Natural Science Basic Research Plan in Shaanxi Province of China(2021JQ-290,2020JQ-210)。
文摘Estimating an accurate six-degree-of-freedom(6-Do F)pose from correspondences with outliers remains a critical issue to 3D rigid registration.Random sample consensus(RANSAC)and its variants are popular solutions to this problem.Although there have been a number of RANSAC-fashion estimators,two issues remain unsolved.First,it is unclear which estimator is more appropriate to a particular application.Second,the impacts of different sampling strategies,hypothesis generation methods,hypothesis evaluation metrics,and stop criteria on the overall estimators remain ambiguous.This work fills these gaps by first considering six existing RANSAC-fashion methods and then proposing eight variants for a comprehensive evaluation.The objective is to thoroughly compare estimators in the RANSAC family,and evaluate the effects of each key stage on the eventual 6-Do F pose estimation performance.Experiments have been carried out on four standard datasets with different application scenarios,data modalities,and nuisances.They provide us with input correspondence sets with a variety of inlier ratios,spatial distributions,and scales.Based on the experimental results,we summarize remarkable outcomes and valuable findings,so as to give practical instructions to real-world applications,and highlight current bottlenecks and potential solutions in this research realm.