期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Load Balancing-Based Routing Optimization Mechanism for Power Communication Networks 被引量:13
1
作者 Ningzhe Xing siya xu +1 位作者 Sidong Zhang Shaoyong Guo 《China Communications》 SCIE CSCD 2016年第8期169-176,共8页
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route... In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently. 展开更多
关键词 power communication networks load balancing routing optimization
下载PDF
Deep Reinforcement Learning Empowered Edge Collaborative Caching Scheme for Internet of Vehicles 被引量:1
2
作者 Xin Liu siya xu +4 位作者 Chao Yang Zhili Wang Hao Zhang Jingye Chi Qinghan Li 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期271-287,共17页
With the development of internet of vehicles,the traditional centralized content caching mode transmits content through the core network,which causes a large delay and cannot meet the demands for delay-sensitive servi... With the development of internet of vehicles,the traditional centralized content caching mode transmits content through the core network,which causes a large delay and cannot meet the demands for delay-sensitive services.To solve these problems,on basis of vehicle caching network,we propose an edge colla-borative caching scheme.Road side unit(RSU)and mobile edge computing(MEC)are used to collect vehicle information,predict and cache popular content,thereby provide low-latency content delivery services.However,the storage capa-city of a single RSU severely limits the edge caching performance and cannot handle intensive content requests at the same time.Through content sharing,col-laborative caching can relieve the storage burden on caching servers.Therefore,we integrate RSU and collaborative caching to build a MEC-assisted vehicle edge collaborative caching(MVECC)scheme,so as to realize the collaborative caching among cloud,edge and vehicle.MVECC uses deep reinforcement learning to pre-dict what needs to be cached on RSU,which enables RSUs to cache more popular content.In addition,MVECC also introduces a mobility-aware caching replace-ment scheme at the edge network to reduce redundant cache and improving cache efficiency,which allows RSU to dynamically replace the cached content in response to the mobility of vehicles.The simulation results show that the pro-posed MVECC scheme can improve cache performance in terms of energy cost and content hit rate. 展开更多
关键词 Internet of vehicles vehicle caching network collaborative caching caching replacement deep reinforcement learning
下载PDF
A Trusted Edge Resource Allocation Framework for Internet of Vehicles
3
作者 Yuxuan Zhong siya xu +5 位作者 Boxian Liao Jizhao Lu Huiping Meng Zhili Wang Xingyu Chen Qinghan Li 《Computers, Materials & Continua》 SCIE EI 2023年第11期2629-2644,共16页
With the continuous progress of information technique,assisted driving technology has become an effective technique to avoid traffic accidents.Due to the complex road conditions and the threat of vehicle information b... With the continuous progress of information technique,assisted driving technology has become an effective technique to avoid traffic accidents.Due to the complex road conditions and the threat of vehicle information being attacked and tampered with,it is difficult to ensure information security.This paper uses blockchain to ensure the safety of driving information and introduces mobile edge computing technology to monitor vehicle information and road condition information in real time,calculate the appropriate speed,and plan a reasonable driving route for the driver.To solve these problems,this paper proposes a trusted edge resource allocation framework for assisted driving service,which includes two stages:the blockchain generation stage(the first stage)and assisted driving service stage(the second stage).Furthermore,in the first stage,a delay-and-throughput-oriented block generation model for the mobile terminal is designed.In the second stage,a balanced offloading algorithm for assisted driving service based on edge collaboration is proposed to solve the problems of unbalanced load of cluster mobile edge computing(MEC)servers and low resource utilization of the system.And this paper optimizes the throughput of blockchain and delay of the transportation network through deep reinforcement learning(DRL)algorithm.Finally,compared with joint computation and communication resources’allocation(JCCR)and resource allocation method based on binary offloading(RAB),our proposed scheme can optimize the delay by 7.4%and 26.7%,and support various application services of the vehicular networks more effectively. 展开更多
关键词 Blockchain load balancing vehicular networks resource allocation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部